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Université Lille 1

Laboratoire Paul Painlevé, CNRS UMR 8524
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Abstract

This paper tackles important aspects of comets dynamics from a statistical
point of view. Existing methodology uses numerical integration for computing
planetary perturbations for simulating such dynamics. This operation is highly
computational. It is reasonable to wonder whenever statistical simulation of the
perturbations can be much more easy to handle. The first step for answering such
a question is to provide a statistical study of these perturbations in order to catch
their main features. The statistical tools used are order statistics and heavy tail
distributions. The study carried out indicated a general pattern exhibited by the
perturbations around the orbits of the important planet. These characteristics were
validated through statistical testing and a theoretical study based on̈Opik theory.

Résuḿe

Cet article aborde des aspects de la dynamique des comètes du point de vue
statistique. La méthodologie existante utilise l’intégration numérique pour calcu-
ler les perturbations planètaires dans une telle dynamique. Cette opération est très
coûteuse en temps de calcul. Il est donc raisonable de se demander si la simula-
tion statistique de ces perturbations ne constitue un cadreplus convenable pour ce
problème. Ainsi, le premier pas, pour répondre à une telle question, est de four-
nir une étude statistique qui décrit ces perturbations. Les outils statistiques utilisés
sont les statistiques d’ordre et les lois à queue lourde. Les resultats de cette étude
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ont montré que ces perturbations induisent une structure spatiale autour de l’orbite
des grandes planètes. Ces caractéristiques ont été validées en utilisant des tests
statistiques et la théorie d’Öpik.
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1 Introduction

Comet dynamics is one of the most difficult phenomena to model in celestial me-
chanics. Indeed their dynamics is strongly chaotic, thus individual motions of known
comets are hardly reproducible for more than a few orbital periods. When the origin of
comets is under investigation, one is thus constrained to make use of statistical tools in
order to model the motion of a huge number of comets supposed to be representative
of the actual population. Such statistical model should also be reliable on a time scale
comparable to the age of the solar system.

Due to their very elongated shapes, comet trajectories are affected by planetary
perturbations during close encounters with planets. Such perturbations turn out to be
the main mechanisms able to affect comet trajectories. Consequently, it is of major
importance to model these perturbations in a way which is statistically reliable and
with the lowest cost in computing time.

A direct numerical integration of a 6 bodies restricted problem (Sun, Jupiter, Saturn,
Uranus, Neptune, Comet) each time a comet enters the planetary region of the Solar
System is not possible due to the cost in computer time.

Looking for an alternative approach, we can take advantage of the fact that plane-
tary perturbation on Oort cloud comets are uncorrelated. Infact the orbital period of
such comets are so much larger than those of the planets, thatwhen the comet returns,
the phases of the latter can be taken at random. Thus we can build a synthetic integrator
à la Froeschlé and Rickman [15] to speed up the modeling. The criticism by [14] to
such an approach does not apply in the present case because, as just said, successive
planetary perturbations on an Oort cloud comets are uncorrelated.

The aim of this paper is to give a statistical description of alarge set of plane-
tary perturbations assumed to be representative of those acting on Oort cloud comets
entering the planetary region. To this purpose we use order statistics and heavy tails
distributions.

The rest of this paper is organised as follow. Section 2 is devoted to the presentation
of the mechanism producing the data,i.e. the planetary perturbations and the statistical
tools used to analyse the data. These tools are order statistics and heavy-tail distribu-
tions, that allow, respectively, the study and the modelingof the data distribution, with
respect to its symmetry, skewness and tail fatness. The obtained results are shown and
interpreted in the third section. The results are finally analysed from a more theoretical
point of view using theÖpik theory in Section 4. The paper closes with conclusions
and perspectives.

2 Statistical tools

2.1 Data compilation

By planetary perturbations, one intends the variations of the orbital parameters between
their values before entering the planetary region of the Solar System,i.e. the barycen-
tric orbital element of the osculating cometary orbit (zi , qi , cosi i , ωi ,Ωi)T (whereq, i,
ω, Ω are the perihelion distance, the inclination, the argumentof perihelion and the
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longitude of the ascending node andz = −1/a with a the semi-major axis), and their
final values (zf , qf , cosi f , ω f ,Ω f )T , that is either when the comet is at its aphelion or
when it is back on a keplerian barycentric orbit.

Between its initial and final values, the system Sun+ Jupiter+ Saturn+ Uranus
+ Neptune+ comet is integrated using the RADAU integrator at the 15th order [10]
for a maximum of 2 000 yrs. Then the planetary perturbation obtained through this
integration is (∆z= zf − zi ,∆q = qf − qi ,∆ cosi = cosi f − cosi i ,∆ω = ω f − ωi ,∆Ω =

Ω f − Ωi)T . The detail on the numerical experiment used to perform the integrations
may be found in [26].

Repeating the above experiment with a huge number of comets (namely 9 600 000),
one gets a set of planetary perturbations. The comets are chosen with uniform distribu-
tion of the perihelion distance between 0 and 32 AU, cosine ofthe ecliptic inclination
between -1 and 1 and argument of perihelion, longitude of theascending node between
0 and 360◦. The initial mean anomaly is chosen such that the perihelionpassage on its
initial keplerian orbit occurs randomly with an uniform distribution between 500 and
1 500 years after the beginning of the integration.

In the present study, because the perturbations are mainly depending onqi and cosi i
[13], each perturbation is associated to the couple (cosi i , qi). Similarly, since the orbital
energy is the main quantity which is affected by the planetary perturbations, we will
consider only these perturbations here.

Consequently, our data are composed by a set of triplets (cosi i , qi,Z) whereZ =
zf − zi denotes the perturbations of the cometary orbital energy bythe planets, and
(cosi i , qi) a point in a space denoted byK. In the following, we callZ the perturbation
mark.

2.2 Exploratory analysis based on order statistics

Let Z1, . . . ,Zn be a sequence of independent identically distributed random variables
and letF(z) = P(Z ≤ z), z ∈ R be the corresponding cumulative distribution function.
Let us consider alsoΣn, the set of permutations on{1, . . . , n}.

The order statistics of the sample (Z1, . . . ,Zn) is the rearrangement of the sample in
increasing order and it is denoted by (Z(1,n), . . . ,Z(n,n)). HenceZ(1,n) ≤ . . . ,≤ Z(n,n) and
there exists a random permutationσn ∈ Σn such that

(Z(1,n), . . . ,Z(n,n)) = (Zσn(1), . . . ,Zσn(n)). (1)

In the following, some classical results from the literature are presented [4, 8]. If
F is continuous, then almost surelyZ(1,n) < . . . , < Z(n,n) and the permutationσn in
definition (1) is unique. IfZ1 has a probability densityf , then the probability density
of the order statistics is given by

n!1{z1 < . . . zn} f (z1) . . . f (zn).

A major characteristic of order statistics is that they allow quantiles approxima-
tions. The quantiles are one of the most easy to use tool for characterising a probability
distribution. In practice, the data distribution can be described by such empirical quan-
tiles.
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Two important results are now presented. The first result shows how to compute
empirical quantiles using order statistics. Let us assume thatF is continuous and there
exists an unique solutionzq to the equationF(z) = q with q ∈ (0, 1). Clearly,zq is
theq−quantile ofF. Let (k(n), n ≥ 1) be an integers sequence such that 1≥ k(n) ≥ n
and limn→∞

k(n)
n = q. Then the sequence of the empirical quantiles (Z(k(n),n), n ≥ 1)

converges almost surely towardszq.
The second result allows the computation of confidence intervals and hypothesis

testing. IfZ1 has a continuous probability densityf such thatf (zq) > 0 for q ∈ (0, 1)
and if it is supposed thatk(n) = nq+ o(

√
n), thenZ(k(n),n) converges in distribution

towardszq as it follows

√
n(Z(k(n),n) − zq)

L→ N
(
0,

q(1− q)
f (zq)2

)
.

The exploratory analysis we propose for the perturbation data sets is based on the
computation of empirical quantiles. There are several reasons motivating such a choice.
First, there is not too much a priori knowledge concerning the perturbations marks, ex-
cept that they are distributed around zero and that they are uniformly located inK. This
implies that very few hypothesis with respect to the data canbe done. Clearly, in order
to apply such an analysis the only assumptions needed are theconditions of validity for
the central limit theorem. From a practical point of view, anempirical quantiles based
analysis allows for checking the tails, the symmetry and thegeneral spatial pattern of
the data distribution. From a theoretical point of view, themathematics behind this tool
allow a rather rigorous analysis.

2.3 Stable distributions models

Stable laws are a rich class of probability distributions that allow heavy tails, skewness
and have many nice mathematical properties. They are also known in the literature
under the name ofα-stable, stable Paretian or Lévy stable distributions. These models
were introduced by [18]. In the following some basic notionsand results on stable
distributions are given [1, 12, 27].

A random variableZ has astable distributionif for any A, B > 0, there is aC > 0
andD ∈ R1 such that

AZ1 + BZ2
L
=CZ+ D,

whereZ1 andZ2 are independent copies ofZ, and ”
L
=” denotes equality in distribution.

A stable distribution is characterised by four parametersα ∈ (0, 2], β ∈ [−1, 1],
γ > 0 andδ ∈ R1 and it is denoted bySα(β, γ, δ). The role of each parameter is
as it follows :α determines the rate at which the distribution tail converges to zero,β
controls the skewness of the distribution, whereasγ andδ are the scale and shift param-
eters, respectively. Figure 1 shows the influence of these parameters on the distribution
shape.

The linear transformation of stable random variable is alsoa stable variable. Ifα ∈
(0, 2), thenE|Z|p < ∞ for any 0< p < α andE|Z|p = ∞ for anyp > α. The distribution
is Gaussian ifα = 2. The stable variable withα < 2 has an infinite variance and
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Figure 1: Influence of the parameters on the shape of a stable distribution : a)β param-
eter, b)α, γ andδ parameters.

the corresponding distribution tails are asymptotically equivalent to a Pareto law [28].
More precisely {

limz→∞ zαP{Z > z} =
(1+β)

2 σ,

limz→∞ zαP{Z < −z} = (1−β)
2 σ.

(2)

whereσ = Cαγα, Cα = 1−α
2Γ(2−α) cos(πα/2) if α , 1 andCα = 2

π
elsewhere. The distribution

is symmetric wheneverβ = 0, or skewed otherwise. In the caseα < 1, the support of
the distributionSα(β, γ, 0) is the positive half-line whenβ = 1 and the negative half-
line whenβ = −1. If α > 1, then the first order moment exists and equals the shift
parameterδ.

One of the technical difficulty in the study of stable distribution is that except for a
few cases (Gaussian, Cauchy and Lévy), there is no explicitform for the densities. The
characteristic function can be used instead, in order to describe the distribution. There
exist numerical methods able to approximate the probability density and the cumulative
distribution functions [21]. Simulation algorithms for sampling stable distribution can
be found in [1, 3].

Due to the previous considerations, parameter estimation is still an open and chal-
lenging problem. Several methods are available in the literature [11, 19, 20, 22, 25].
Nevertheless, these methods have all the same drawback, in the sense that the data is
supposed to be a sample of a stable law. It is a well known fact,that if the data comes
from a different distribution, the inference of the tail index may be strongly mislead-
ing. A solution to this problem is to estimate the tail exponent [17] and then estimate
distribution parameters ifα ∈ (0, 2].

Still, it remains to solve the problem of parameter estimation whenever the tail
exponent is greater than 2. Under these circumstances, distributions with regularly
varying tails can be considered. A random variable has a distribution with regularly
varying tails of indexα ≥ 0 if there existp, q ≥ 0, p + q = 1 and a slowly varying
functionL, i.e limz→∞

L(λz)
L(z) = 1 for anyλ > 0, such that

{
limz→∞ zαL(z)P{Z > z} = p,
limz→∞ zαL(z)P{Z < −z} = q.

(3)
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It is important to notice that the conditions (2) can be obtained from (3) whenever
L(z) = 1/σ andp = (1+ β)/2.

The parameter estimation algorithm proposed by [6, 7] is constructed under the
assumption that the sample distribution has the asymptoticproperty (2). The algorithm
gives three estimated valuesα̂, β̂, σ̂. Theδ̂ can be computed easily wheneverα > 1, by
approximating it using the empirical mean of the samples. This parameter estimation
method can be used for stable distribution and in this case,α̂ should indicate positive
values lower than 2. In the same time, the strong point of the method is that it can
be used for data not following stable distributions. In thiscase the data distribution is
assumed to have regularly varying tails. The weak point of this algorithm is that in this
case, it does not give indications concerning the body of thedistribution. Nevertheless,
in both cases, this method allows a rather complete characterisation of a wide panel
of probability distributions. The code implementing the algorithm is available just by
simple demand to the authors.

3 Results

3.1 Empirical quantiles

The lack of stationarity of the perturbations marks imposesthe partitioning of the lo-
cation space in a finite number cells. Let us consider such a partition K = ∪n

i=1Ki . The
cells Ki are disjoint and they all have the same volume. The size of volume has to be
big enough in order to contain a sufficient number of perturbations. In the same time,
the volume has to be small enough to allow stationarity assumptions for the perturba-
tions marks inside a cell. After several trial and errors, wehave opted for a partition
made of square cellsKi , having all the same volume 0.1 × 0.1 AU, so that each cell
contains about 1 500 perturbations.

We were interested in three questions concerning the perturbations marks distri-
butions. The first two questions are related to the tails and the symmetry of the data
distribution. The third question is related to a more delicate problem. It is a well known
fact that the perturbations locations follow an uniform distribution in K. Nevertheless,
much few is known about the spatial distribution of the perturbations marks, except that
they are highly dependent on their corresponding locations. So, the third question to
be formulated is the following : do the distributions of the perturbations marks exhibit
any pattern depending on the perturbation location ?

For this purpose, empiricalq−quantiles were computed in each cell. The most part
of these values were indicating that the perturbations marks are distributed around the
origin, while no particular spatial pattern is exhibited inthe perturbation location space.

On the other hand, the situation is completely different for extremalq−values such
as : 0.01, 0.05, 0.95, 0.99. These quantiles were indicating rather important values
around the semi-major axis of each planet. In order to check if these values may reveal
heavy tail distributions, the difference based indicatorzq − n̂q was built. The first term
of this indicator represents an empiricalq−quantile. The second term is the theoreti-
cal q−quantile of the normal law with mean and standard deviation given byz0.50 and
0.5(z0.84− z0.16). Hence, for values ofq approaching 1, positive values of the indicator
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may suggest heavy-tail behaviour for the data. Clearly, this indicator may be used also
for quantiles approaching 0. In this case, it is the negativesign that reveals the fatness
of the distribution tail.

In Figure 2 the values obtained for the difference indicatorz0.99 − n̂0.99 are shown.
It can be observed that its rather important values appearedwhenever the perturbations
are located in the vicinity of a planet orbit. All these values tend to form a spatial
pattern similar to an arrow-like shape. As it can be observed, this shape is situated
around the planet orbit and it is pointing from the right to left. It tends to vanish, while
the cosine of the inclination angle approaches−1. The prominence of this arrow shape
clearly depends on the closest planet : bigger the planet is,sharper is the arrow-like
shape. This can be observed by looking at the change of valuesfor the difference
indicator with respect the size of the planet. These observations fulfil some good sense
expectations : the comets perturbations tend to be more important whenever a comet
cross the orbit of a giant planet.

Since these phenomena are observed for extremalq−quantiles, they indicate that
the distribution tails may be an important feature for the data. Hence, a statistical
model for the data should be able to catch these characteristics of the perturbations
marks.
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Figure 2: Empirical quantiles based difference indicatorz0.99− n̂0.99 for the perturbation
marks around the big planets : a) Jupiter, b) Saturn, c) Uranus d) Neptune. For each
diagram they-axis correspond to initial perihelion distance in AU, and the x-axis to
cosine of the inclination. We recall that the respective semi-major axis of the four giant
planets are:aJ = 5.2 AU, aS = 9.6 AU, aU = 19.2 AU, aN = 30.1 AU.
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Empirical quantiles can be also used in straightforward wayas symmetry indicators
of the data distribution. Clearly, by just checking whenever the differencezq − |z1−q|
tends to 0, this may suggest a rather symmetric data distribution. Figure 3 shows the
computation of such differences for each data cell. The values obtained are rather small
all over the studied region. Nevertheless, there are some regions and especially around
the Jupiter’s orbit we may suspect the data distributions are a little bit skewed. Still,
since the perturbations have rather small numerical values, assessing symmetry using
the proposed indicator has to be done cautiously.

It is reasonable to expect a more reliable answer concerningthis question by using
a statistical model. Clearly, such a model should be able to catch the symmetry of the
data distribution as well.
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Figure 3: Exploring symmetry using empirical quantiles differencez0.99− |z0.01| for the
perturbations marks around Jupiter. Axis are as for Fig. 2

The central limit theorem available for the order statistics allows the construction
of an hypothesis test. Since our analysis leads us towards heavy-tailed distributions
models, as a precaution, a statistical test was performed toverify if a rather simpler
model can be fitted to the data. The normality assumption was considered as null
hypothesis for the test. The test was performed for the data in each cell, by considering
that the normal distribution parameters are given by the empirical quantiles as expained
previously. Thep−values were computed using aχ2 distribution. In this context, the
local normality assumption for the perturbation marks is globally rejected. Figure 4
shows the result of testing the normality of thez0.95 empirical quantile computed around
the Jupiter’s orbit.

Indeed, there exist regions where the normality assumptions cannot be rejected
for the considered quantile. Still, the regions where this hypothesis is rejected clearly
indicate that normality cannot be assumed entirely. Therefore, a parametric statistical
model has to be able to reflect this situation : indicate whenever is the case how “heavy”
or how stable are the distributions tails.

The only parameter used during this exploratory analysis was the partitioning of
the location domainK. There is one more question to answer : do the obtained results
depend on the patterns exhibited by the data, or they are justa consequence of the par-
titioning in cells of the data locations ? To answer this question, a bootstrap procedure
and a permutation test were implemented [5].
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Figure 4: p−values computed for testing the normality of the empirical quantilesz0.95

around Jupiter.

Bootstrap samples were randomly selected by uniformly choosing 20% from the
entire perturbations data set. Difference indicators were computed for this special data
set. This operation was repeated 100 times. At the end of the procedure, the empirical
means of the difference indicators were computed. In Figure 5a the bootstrapmean
of the indicatorz0.99 − n̂0.99 around Jupiter’s orbit is showed. As expected, the same
pattern is obtained as in Figure 2a : important values are grouped around the planet’s
orbit while exhibiting an arrow-like shape pointing from right to left.

The permutation test follows the same steps as the bootstrapprocedure except that
the perturbations are previously permuted. This means thatall the perturbations are
modified as it follows : for a given perturbation, its mark is kept while its location is
exchanged with the location of another randomly chosen perturbation. This procedure
should destroy any pre-existing structure in the data. In this case, we expect that ap-
plying a bootstrap procedure on this new data set will indicate no relevant patterns. In
Figure 5b the result of such permutation test is showed. The experiment was carried
out in the vicinity of Jupiter’s orbit. After permuting the perturbations as indicated, the
previously described bootstrap procedure was applied in order to estimate bootstrap
means of the difference indicatorz0.99 − n̂0.99. The result confirmed our expectations,
in the sense that no particular structure or pattern is observed. This clearly indicates,
that the analysis results were due mainly to the original data structure and not to the
partitioning of the perturbations location domain in cells.

In the same time, the permutation test is also a verification of the proposed ex-
ploratory methodology. This methodology depends on a precision parameter for char-
acterising the hidden structure or pattern exhibited by thedata. Still, whenever such a
structure does not exist at all, the present method detects nothing.

3.2 Inference using heavy-tail distributions

The empirical observations of the perturbations marks distributions indicated fat tails
and skewness behaviour. This leptokurtic character of the perturbation distributions
was observed especially in the vicinity of the planets orbits. In response to this empir-
ical evidence heavy-tail distribution modelling was chosen.
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Figure 5: Validation of the analysis based on the computation of the difference indicator
z0.99− n̂0.99 around Jupiter : a) bootstrap procedure ; b) permutation test.

The same cell partitioning as for the exploratory analysis is maintained. The previ-
ously mentioned algorithm for estimating stable laws parameters was run for the data
in each cell.

In Figure 6 the estimation result of the tail exponent is shown. Clearly, it can
be observed a region formed by the cells corresponding to estimatedα values lower
than 2. This kind of region may be located around each orbit corresponding to a big
planet. The shape of this region is less picked than the region obtained using empirical
quantiles. Still, the two results are coherent. Both results indicate that the heavy-
tailed character of the perturbations distributions exhibits a spatial pattern. This spatial
pattern is located around the orbits of the big planets.

The skewness of the data distribution can be analysed by looking at the results
shown in Figure 7. Indeed, it can be observed that there are cells containing per-
turbations following a skewed distribution. The obtained results indicate neither the
presence of a pattern by such distributions, nor the presence of such a pattern around
the orbits of the big planets.

The estimation results for theσ andδ parameters are presented in Figure 8. The
scale parameter indicates how heavy are the distribution tails. In Figure 8a, it may be
observed that the most important values ofσ tend to form a spatial pattern similar with
the patterns formed by the difference indicator based on order statistics and the tail
exponent, respectively. The results obtained for theδ parameter indicate that a shift of
the perturbation may exist around the orbit of the corresponding big planets.

In order to check these results a statistical test using the central limit theorem for
order statistics was built. Clearly, this result can be usedin order to verify if the empir-
ical quantiles from a cell are coming rather from the distribution characterised by the
parameters previously estimated. Figure 9 shows the resultof a test verifying that the
z0.99 quantiles around the Jupiter’s orbit are originated from a heavy-tail distribution,
while the quantiles outside this region are coming rather from Pareto distribution. It
can be observed that high values for thep−values are spread around the entire region :
for 81.5% of the cells we cannot reject the null hypothesis. Clearly, this result shows a
far better characterisation of the distribution tails of the perturbations than the test for
the normality assumption performed in the preceding section.
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Figure 6: Estimation result of the tail exponentα for the perturbation marks around the
big planets : a) Jupiter, b) Saturn, c) Uranus d) Neptune.
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Figure 7: Estimation result of the skewness parameterβ for the perturbations marks
around Jupiter.
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Figure 8: Estimation result of the scale parameterσ and shift parameterδ for the
perturbation marks around Jupiter.
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Figure 9: p−values computed for testing if the empirical quantilesz0.99 around the
Jupiter’s orbit are originated from a heavy-tail distribution.
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The previous test certifies the perturbations distributions tails exhibit a stable or
regular variation behaviour. If the perturbations are close to the orbit of a big planet
then they have rather a stable behaviour. Figure 10 shows thep−values of aχ2−test
implemented for the perturbations with estimated tail exponentα < 2. This test allows
to check the perturbations also for their distribution body. It can be observed that almost
in all these regions the assumption of stable distributionsis not rejected.
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Figure 10:p−values of aχ2 statistical test for the perturbations withα < 2 around the
big planets : a) Jupiter, b) Saturn, c) Uranus, d) Neptune.

For the perturbations with a tail exponent greater than 2, analternative family of
distributions with regularly varying tails was consideredfor modelling. Its expressions
is given below :

f (z) =
Cκ,α

1+ | κz− ω |α+1
, (4)

with Cκ,α the normalising constant,κ the scale parameter,ω the location parameter and
α the tail exponent.

The parameter estimation for such distributions was done inseveral steps. First,
the tail exponentα was considered obtained from the previous algorithm. Second,
the location parameterω was estimated by the empirical mean of the data samples.
Finally, the normalising constantCκ,α and the scale parameterκ were estimated using
the method of moments.
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A χ2 statistical test was done for the perturbations withα ≥ 2. The null hypothesis
considered was that the considered perturbations follow a regularly varying tails distri-
bution (4) with parameters given by the previously described procedure. The obtained
p−values are shown in Figure 11. It can be noticed that in the majority of considered
cells the null hypothesis is not rejected.
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Figure 11:p−values of aχ2 statistical test for the perturbations withα ≥ 2 around the
big planets : a) Jupiter, b) Saturn, c) Uranus, d) Neptune.

4 Discussion and interpretation

Some of the features present in the Figures can be explained in the framework of the
analytical theory of close encounters [24, 16, 2, 29].

Let us consider the magnitude of the perturbations in the vicinity of a = aJ =

5.2 AU (Jupiter). The colour coding of the Figure 2 represents the magnitudeP of the
perturbation, corresponding to

Z = − 1
af
+

1
ai
∝ hf − hi (5)

wherea andh are respectively the orbital semi-major axis and the orbital energy of the
heliocentric keplerian motion of the comet. The subscriptsi and f stand, respectively,
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for initial andfinal, i.e., before and after the interaction with Jupiter).
Perturbations at planetary encounters are characterised by large and in general

asymmetric tails, as was shown by various authors [9, 23, 15]; an analytical expla-
nation of these features was given by [2] and by [30], and the consequences on the
orbital evolution of comets was discussed by [29].

Let us consider the case of parabolic initial orbits (our orbits are in fact very close
to parabolic). In theq-cosi plane, the condition for the tails of the energy perturbation
distribution to be symmetric is:

0 =
1− 3+ 2

√
2q/ap cosi

2
√

3− 2
√

2q/ap cosi
,

whereap is the orbital semi major axis of the planet encountered.
However, the finite size of the available perturbation sample must be taken into

account, as the tails would become sufficiently populated to show any asymmetry only
for very large samples.

A way to take this effect into account is to consider that in different regions of the
q-cosi plane the probabilityp for the comet on a parabolic orbit to pass within a given
unperturbed distanceb from the planet would be, according to [24]:

p =
b2

a2
p

√
3− 2

√
2q/ap cosi

π sini
√

2− 2q/ap

.

To take into account the size of the perturbation, we consider that the angleγ by
which the planetocentric velocity of the comet is rotated isgiven by:

tan
γ

2
=

apmp

bm⊙
(
3− 2

√
2q/ap cosi

) ;

we then define a functionf as:

f = p tan
γ

2
(6)

=
bmp

apm⊙π sini
√

2− 2q/ap

√
3− 2

√
2q/ap cosi

.

Figure 12 shows the level curves off ; as can be seen, in it are reproduced the
main features of Figure 2. The arrow-like shape observed during the statistical study
can be now observed on the definition domain imposed by (6). This strenghten our
interpretation of the features of Fig. 2 as due to the geometry of close approaches
described bÿOpik theory.

5 Conclusion and perspectives

In this paper a statistical study of the planetary perturbations on Oort cloud comets
was carried out. The exploratory analysis of the perturbations distributions based on
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Figure 12: Level curves for the functionf around the semi-major axis of Jupiter.

order statistics indicated the tail behaviour as determinant feature. Following this idea,
parametric inference for heavy-tail distributions was implement. The obtained results
indicated that the perturbations following heavy-tail stable distributions that are not
always symmetric while tending to form a spatial pattern. This pattern is rather arrow-
like shaped and is situated around the orbits of the big planets. A theoretical study was
carried out, and it was observed that this pattern is similarwith the theoretical curves
derived from theÖpik theory. The perturbations outside this arrow shaped region were
not exhibiting a stable character and they were modelled by afamily of distributions
with regularly varying tails. In both cases, stable and non-stable distributions, the
modelling choices were confirmed by a statistical test.

Clearly, these choices and the estimation parameter estimation procedures can be
further improved. Nevertheless, the obtained results givegood indications and also
good reasons for developing a probabilistic methodology able to simulate such plane-
tary perturbations.
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[14] M. Fouchard, Ch. Froeschlé, and G. B. Valsecchi. Is thedynamics of Jupiter
family comets amenable to Monte Carlo modelling?Monthly Notices of the
Royal Astronomical Society, 344:1283–1295, 2003.
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