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Abstract

This paper tackles important aspects of comets dynamice fcstatistical
point of view. Existing methodology uses numerical intéigra for computing
planetary perturbations for simulating such dynamics. sTdperation is highly
computational. It is reasonable to wonder whenever si@lssimulation of the
perturbations can be much more easy to handle. The first@tgméwering such
a question is to provide a statistical study of these peatishs in order to catch
their main features. The statistical tools used are ordsisits and heavy tail
distributions. The study carried out indicated a generétepa exhibited by the
perturbations around the orbits of the important planeesErcharacteristics were
validated through statistical testing and a theoretiaalybased o®pik theory.

Résune

Cet article aborde des aspects de la dynamique des comefesird de vue
statistique. La méthodologie existante utilise I'ini&ipn numérique pour calcu-
ler les perturbations planetaires dans une telle dynaeniGette opération est trés
coliteuse en temps de calcul. Il est donc raisonable de sandiemsi la simula-
tion statistique de ces perturbations ne constitue un gadseconvenable pour ce
probleme. Ainsi, le premier pas, pour répondre a une fgliestion, est de four-
nir une étude statistique qui décrit ces perturbatioes. dutils statistiques utilisés
sont les statistiques d’ordre et les lois a queue lourds.resultats de cette étude
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ont montré que ces perturbations induisent une strucpatade autour de I'orbite
des grandes planétes. Ces caractéristiques ont éteeslen utilisant des tests
statistiques et la théorie @pik.
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1 Introduction

Comet dynamics is one of the mostfdiult phenomena to model in celestial me-
chanics. Indeed their dynamics is strongly chaotic, thd#&/idual motions of known
comets are hardly reproducible for more than a few orbitebge. When the origin of
comets is under investigation, one is thus constrained t@mse of statistical tools in
order to model the motion of a huge number of comets suppaskd tepresentative
of the actual population. Such statistical model should bksreliable on a time scale
comparable to the age of the solar system.

Due to their very elongated shapes, comet trajectories féeetad by planetary
perturbations during close encounters with planets. Sectugpations turn out to be
the main mechanisms able tffect comet trajectories. Consequently, it is of major
importance to model these perturbations in a way which isstitally reliable and
with the lowest cost in computing time.

A direct numerical integration of a 6 bodies restricted peab(Sun, Jupiter, Saturn,
Uranus, Neptune, Comet) each time a comet enters the pfgnmetdon of the Solar
System is not possible due to the cost in computer time.

Looking for an alternative approach, we can take advantagedact that plane-
tary perturbation on Oort cloud comets are uncorrelatedadhthe orbital period of
such comets are so much larger than those of the planetsyltieatthe comet returns,
the phases of the latter can be taken at random. Thus we ddralmyinthetic integrator
a la Froeschlé and Rickman [15] to speed up the modeling cFiicism by [14] to
such an approach does not apply in the present case becaysst said, successive
planetary perturbations on an Oort cloud comets are unetece

The aim of this paper is to give a statistical description d@rge set of plane-
tary perturbations assumed to be representative of thaseyam Oort cloud comets
entering the planetary region. To this purpose we use otd#stics and heavy tails
distributions.

The rest of this paper is organised as follow. Section 2 istbeito the presentation
of the mechanism producing the date, the planetary perturbations and the statistical
tools used to analyse the data. These tools are orderistatsid heavy-tail distribu-
tions, that allow, respectively, the study and the modedifiine data distribution, with
respect to its symmetry, skewness and tail fatness. Thénebtaesults are shown and
interpreted in the third section. The results are finallylgs®d from a more theoretical
point of view using theDpik theory in Section 4. The paper closes with conclusions
and perspectives.

2 Statistical tools

2.1 Data compilation

By planetary perturbations, one intends the variatione@brbital parameters between
their values before entering the planetary region of thaiS8ystemi.e. the barycen-
tric orbital element of the osculating cometary orlat ¢, cosi;, wi, )" (whereq, i,

w, Q are the perihelion distance, the inclination, the argunoémterihelion and the



VIl -4

longitude of the ascending node ané —1/a with a the semi-major axis), and their
final values ¢, gs, cosit, wr, Q¢)7, that is either when the comet is at its aphelion or
when it is back on a keplerian barycentric orbit.

Between its initial and final values, the system Sudupiter+ Saturn+ Uranus
+ Neptune+ comet is integrated using the RADAU integrator at the 15teo{10]
for a maximum of 2000 yrs. Then the planetary perturbatiotaioled through this
integrationis Az = z; — z, AqQ = Qs — (i, ACOSi = COSi{ — COSij, Aw = wf — wj, AQ =
Q¢ — Q)". The detail on the numerical experiment used to performrkegrations
may be found in [26].

Repeating the above experiment with a huge number of comatsely 9 600 000),
one gets a set of planetary perturbations. The comets aseghagth uniform distribu-
tion of the perihelion distance between 0 and 32 AU, cosirth@fecliptic inclination
between -1 and 1 and argument of perihelion, longitude odtitending node between
0 and 360. The initial mean anomaly is chosen such that the perih@éassage on its
initial keplerian orbit occurs randomly with an uniform glibution between 500 and
1500 years after the beginning of the integration.

In the present study, because the perturbations are mapbndling om; and cos;
[13], each perturbation is associated to the couplei(cg$. Similarly, since the orbital
energy is the main quantity which isfected by the planetary perturbations, we will
consider only these perturbations here.

Consequently, our data are composed by a set of triplets;(gp&) whereZ =
z; — z denotes the perturbations of the cometary orbital energthbyplanets, and
(cosij, gi) a pointin a space denoted By In the following, we callZ the perturbation
mark.

2.2 Exploratory analysis based on order statistics

Let Z;,...,Z, be a sequence of independent identically distributed nandariables
and letF(2) = P(Z < 2),z € R be the corresponding cumulative distribution function.
Let us consider alsBy, the set of permutations dh, . . ., n}.

The order statistics of the samplé& (. . ., Z,) is the rearrangement of the sample in
increasing order and it is denoted By, . . ., Znn). HenceZyn < ..., < Znym and
there exists a random permutatiop € X, such that

Zawnys - Zon) = Eoy@ys - - - » Zoa(n)- (1)

In the following, some classical results from the literatare presented [4, 8]. If
F is continuous, then almost surefyp < ...,< Znn and the permutation, in
definition (1) is unique. I#Z; has a probability density, then the probability density
of the order statistics is given by

Nz <...z}f(z)...f(z).

A major characteristic of order statistics is that theywllguantiles approxima-
tions. The quantiles are one of the most easy to use tool vackerising a probability
distribution. In practice, the data distribution can beadibed by such empirical quan-
tiles.
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Two important results are now presented. The first resulivshmw to compute
empirical quantiles using order statistics. Let us assuragr is continuous and there
exists an unique solutior, to the equatiorF(z) = q with g € (0,1). Clearly,z, is
theg—quantile ofF. Let (k(n),n > 1) be an integers sequence such that&(n) > n
and lim,_, @ = g. Then the sequence of the empirical quantil&gdn,.n > 1)
converges almost surely towarzls

The second result allows the computation of confidenceviaterand hypothesis
testing. IfZ; has a continuous probability densitysuch thatf(z;) > 0 forg € (0, 1)
and if it is supposed that(n) = nqg+ o(+vn), thenZymn converges in distribution
towardsz, as it follows

ViZaorm —20) 5 N (o, ot - q)).

f(z)?

The exploratory analysis we propose for the perturbatida dets is based on the
computation of empirical quantiles. There are severabmesmotivating such a choice.
First, there is not too much a priori knowledge concernirgggrturbations marks, ex-
cept that they are distributed around zero and that theyrafermly located inK. This
implies that very few hypothesis with respect to the datalmadone. Clearly, in order
to apply such an analysis the only assumptions needed acertid@ions of validity for
the central limit theorem. From a practical point of view,eampirical quantiles based
analysis allows for checking the tails, the symmetry andgweeral spatial pattern of
the data distribution. From a theoretical point of view, th@&hematics behind this tool
allow a rather rigorous analysis.

2.3 Stable distributions models

Stable laws are a rich class of probability distributiores tllow heavy tails, skewness
and have many nice mathematical properties. They are alsarkin the literature
under the name af-stable, stable Paretian or Lévy stable distributionesehmodels
were introduced by [18]. In the following some basic noti@msl results on stable
distributions are given [1, 12, 27].

A random variableZ has astable distributionf for any A, B > 0, thereis & > 0
andD e R! such that

AZy + BZ,CZ + D,

whereZ; andZ, are independent copies 8f and £ denotes equality in distribution.
A stable distribution is characterised by four parametess (0, 2], 8 € [-1, 1],
y > 0 ands € R and it is denoted byS,(8,7.5). The role of each parameter is
as it follows : a determines the rate at which the distribution tail convergezero8
controls the skewness of the distribution, whergaads are the scale and shift param-
eters, respectively. Figure 1 shows the influence of thesempeters on the distribution
shape.
The linear transformation of stable random variable is alstable variable. & €
(0,2), thenE|Z|P < oo for any O0< p < @ andE|Z|P = oo for anyp > «. The distribution
is Gaussian ifx = 2. The stable variable withh < 2 has an infinite variance and
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a)

Figure 1: Influence of the parameters on the shape of a staitdodtion : a)3 param-
eter, b)a, y ands parameters.

the corresponding distribution tails are asymptoticatjyigalent to a Pareto law [28].
More precisely

(@)

{nmhmfm2>a = @,

2
lim e ZPZ < -2) LB,

whereo = C,y?, C, = m if @ # 1 andC, = Z elsewhere. The distribution

is symmetric wheneve# = 0, or skewed otherwise. In the case< 1, the support of
the distributionS, (8, y, 0) is the positive half-line whe = 1 and the negative half-
line wheng = -1. If @ > 1, then the first order moment exists and equals the shift
parametes.

One of the technical liculty in the study of stable distribution is that except for a
few cases (Gaussian, Cauchy and Lévy), there is no exfaicit for the densities. The
characteristic function can be used instead, in order torttesthe distribution. There
exist numerical methods able to approximate the probgbiéihsity and the cumulative
distribution functions [21]. Simulation algorithms forrepling stable distribution can
be foundin [1, 3].

Due to the previous considerations, parameter estimatistili an open and chal-
lenging problem. Several methods are available in thealitee [11, 19, 20, 22, 25].
Nevertheless, these methods have all the same drawbatle 8ense that the data is
supposed to be a sample of a stable law. It is a well known ttaat if the data comes
from a diferent distribution, the inference of the tail index may rersgly mislead-
ing. A solution to this problem is to estimate the tail expot{d7] and then estimate
distribution parameters if € (0, 2].

Still, it remains to solve the problem of parameter estiorativhenever the tail
exponent is greater than 2. Under these circumstancesipdigins with regularly
varying tails can be considered. A random variable has ailalisibn with regularly
varying tails of indexa > O if there existp,q > 0,p+ g = 1 and a slowly varying

functionL, i.e lim,_« % =1 for anyA > 0, such that

{nmhwfuaﬂz>ﬁ = b (3)

lim,.e0 ZLQP{Z < -2}

|
o
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It is important to notice that the conditions (2) can be aldifrom (3) whenever
L(2 =1/candp=(1+p)/2.

The parameter estimation algorithm proposed by [6, 7] isstrocted under the
assumption that the sample distribution has the asympagjgerty (2). The algorithm
gives three estimated vaIuesB . Thes can be computed easily whenewer 1, by
approximating it using the empirical mean of the sampless pharameter estimation
method can be used for stable distribution and in this Gashould indicate positive
values lower than 2. In the same time, the strong point of tkéhod is that it can
be used for data not following stable distributions. In #ase the data distribution is
assumed to have regularly varying tails. The weak pointigfatgorithm is that in this
case, it does not give indications concerning the body oflisigibution. Nevertheless,
in both cases, this method allows a rather complete chaisetien of a wide panel
of probability distributions. The code implementing thgaithm is available just by
simple demand to the authors.

3 Results

3.1 Empirical quantiles

The lack of stationarity of the perturbations marks impdbkespartitioning of the lo-
cation space in a finite number cells. Let us consider suchtdipa K = U | K;. The
cellsK; are disjoint and they all have the same volume. The size afrwelhas to be
big enough in order to contain affigient number of perturbations. In the same time,
the volume has to be small enough to allow stationarity agsioms for the perturba-
tions marks inside a cell. After several trial and errors,hage opted for a partition
made of square cellK;, having all the same volumeDx 0.1 AU, so that each cell
contains about 1 500 perturbations.

We were interested in three questions concerning the ations marks distri-
butions. The first two questions are related to the tails Ardsymmetry of the data
distribution. The third question is related to a more deéigaoblem. Itis a well known
fact that the perturbations locations follow an uniformtidigition in K. Nevertheless,
much few is known about the spatial distribution of the pedxations marks, except that
they are highly dependent on their corresponding locati&@us the third question to
be formulated is the following : do the distributions of therfurbations marks exhibit
any pattern depending on the perturbation location ?

For this purpose, empiricgl-quantiles were computed in each cell. The most part
of these values were indicating that the perturbations maré& distributed around the
origin, while no particular spatial pattern is exhibitedlie perturbation location space.

On the other hand, the situation is completelfjatient for extremad|—values such

s : 0010.050.95,0.99. These quantiles were indicating rather important \salue
around the semi-major axis of each planet. In order to cHdblkese values may reveal
heavy tail distributions, the fference based indicatay — iy was built. The first term
of this indicator represents an empiricgiquantile. The second term is the theoreti-
cal g—quantile of the normal law with mean and standard deviativergby z,so and
0.5(20.84 — 20.16)- Hence, for values aj approaching 1, positive values of the indicator
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may suggest heavy-tail behaviour for the data. Clearly,itidicator may be used also
for quantiles approaching 0. In this case, it is the negdiiye that reveals the fatness
of the distribution tail.

In Figure 2 the values obtained for thefdrence indicatozy g9 — Tp.99 are shown.

It can be observed that its rather important values appednedever the perturbations
are located in the vicinity of a planet orbit. All these vauend to form a spatial
pattern similar to an arrow-like shape. As it can be obserttéd shape is situated
around the planet orbit and it is pointing from the right tft.1& tends to vanish, while
the cosine of the inclination angle approachkés The prominence of this arrow shape
clearly depends on the closest planet : bigger the plansharper is the arrow-like
shape. This can be observed by looking at the change of védudke diference
indicator with respect the size of the planet. These obtienafulfil some good sense
expectations : the comets perturbations tend to be morertangtavhenever a comet
cross the orbit of a giant planet.

Since these phenomena are observed for extrgr@lantiles, they indicate that
the distribution tails may be an important feature for théadaHence, a statistical
model for the data should be able to catch these charaaerdadtthe perturbations
marks.
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Figure 2: Empirical quantiles basedfgéirence indicatazg 99—1o.g9 fOr the perturbation
marks around the big planets : a) Jupiter, b) Saturn, ¢) WrahWNeptune. For each
diagram they-axis correspond to initial perihelion distance in AU, ahe x-axis to
cosine of the inclination. We recall that the respectiveismajor axis of the four giant
planets area; = 5.2 AU, as = 9.6 AU, ay = 19.2 AU, ay = 30.1 AU.
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Empirical quantiles can be also used in straightforward asagymmetry indicators
of the data distribution. Clearly, by just checking whenewe diferencezg — |z,
tends to O, this may suggest a rather symmetric data disgtribuFigure 3 shows the
computation of such éfierences for each data cell. The values obtained are rattadr sm
all over the studied region. Nevertheless, there are sogienmgand especially around
the Jupiter’s orbit we may suspect the data distributiomsadlittle bit skewed. Still,
since the perturbations have rather small numerical vahssessing symmetry using
the proposed indicator has to be done cautiously.

It is reasonable to expect a more reliable answer concethigguestion by using
a statistical model. Clearly, such a model should be ablatchahe symmetry of the
data distribution as well.

aaaaaaa
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uuuuuu

a)

Figure 3: Exploring symmetry using empirical quantilefetiencezy o9 — |29.01| for the
perturbations marks around Jupiter. Axis are as for Fig. 2

The central limit theorem available for the order statstdlows the construction
of an hypothesis test. Since our analysis leads us towas/Hailed distributions
models, as a precaution, a statistical test was performedrity if a rather simpler
model can be fitted to the data. The normality assumption wasidered as null
hypothesis for the test. The test was performed for the datach cell, by considering
that the normal distribution parameters are given by theigoapquantiles as expained
previously. Thep—values were computed using distribution. In this context, the
local normality assumption for the perturbation marks sbglly rejected. Figure 4
shows the result of testing the normality of #3@s empirical quantile computed around
the Jupiter’s orbit.

Indeed, there exist regions where the normality assumpgti@mnot be rejected
for the considered quantile. Still, the regions where tlyigdthesis is rejected clearly
indicate that normality cannot be assumed entirely. Tloeeefa parametric statistical
model has to be able to reflect this situation : indicate whenis the case how “heavy”
or how stable are the distributions tails.

The only parameter used during this exploratory analysss tlva partitioning of
the location domaifK. There is one more question to answer : do the obtained sesult
depend on the patterns exhibited by the data, or they ara gmtsequence of the par-
titioning in cells of the data locations ? To answer this djoes a bootstrap procedure
and a permutation test were implemented [5].
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Figure 4: p—values computed for testing the normality of the empiricsdmnfilesz s
around Jupiter.

Bootstrap samples were randomly selected by uniformly simgo20% from the
entire perturbations data set.flgirence indicators were computed for this special data
set. This operation was repeated 100 times. At the end ofrtheedure, the empirical
means of the dierence indicators were computed. In Figure 5a the bootstegn
of the indicatorzy g9 — Tp.99 around Jupiter’s orbit is showed. As expected, the same
pattern is obtained as in Figure 2a : important values aregpt around the planet's
orbit while exhibiting an arrow-like shape pointing frongli to left.

The permutation test follows the same steps as the bootstoapdure except that
the perturbations are previously permuted. This meansath#te perturbations are
modified as it follows : for a given perturbation, its mark esp while its location is
exchanged with the location of another randomly chosemugeation. This procedure
should destroy any pre-existing structure in the data. i¢hse, we expect that ap-
plying a bootstrap procedure on this new data set will ingice relevant patterns. In
Figure 5b the result of such permutation test is showed. Xperement was carried
out in the vicinity of Jupiter’s orbit. After permuting thepgurbations as indicated, the
previously described bootstrap procedure was appliedderaio estimate bootstrap
means of the dierence indicatory g9 — Np.ge. The result confirmed our expectations,
in the sense that no particular structure or pattern is @bserThis clearly indicates,
that the analysis results were due mainly to the originad datucture and not to the
partitioning of the perturbations location domain in cells

In the same time, the permutation test is also a verificatfot® proposed ex-
ploratory methodology. This methodology depends on a pi@tiparameter for char-
acterising the hidden structure or pattern exhibited bydgdta. Still, whenever such a
structure does not exist at all, the present method detetiténg.

3.2 Inference using heavy-tail distributions

The empirical observations of the perturbations marksitigions indicated fat tails
and skewness behaviour. This leptokurtic character of #raubation distributions
was observed especially in the vicinity of the planets srit response to this empir-
ical evidence heavy-tail distribution modelling was chase
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Figure 5: Validation of the analysis based on the computatfthe diference indicator
Zo.99 — No,99 @around Jupiter : a) bootstrap procedure ; b) permutatidn tes

The same cell partitioning as for the exploratory analysiwaintained. The previ-
ously mentioned algorithm for estimating stable laws patams was run for the data
in each cell.

In Figure 6 the estimation result of the tail exponent is shovClearly, it can
be observed a region formed by the cells corresponding tmastda values lower
than 2. This kind of region may be located around each orlsiesponding to a big
planet. The shape of this region is less picked than the memitained using empirical
quantiles. Still, the two results are coherent. Both resintlicate that the heavy-
tailed character of the perturbations distributions eithid spatial pattern. This spatial
pattern is located around the orbits of the big planets.

The skewness of the data distribution can be analysed byrigak the results
shown in Figure 7. Indeed, it can be observed that there di® acantaining per-
turbations following a skewed distribution. The obtainedults indicate neither the
presence of a pattern by such distributions, nor the presehsuch a pattern around
the orbits of the big planets.

The estimation results for the ands parameters are presented in Figure 8. The
scale parameter indicates how heavy are the distributits ta Figure 8a, it may be
observed that the most important values-dénd to form a spatial pattern similar with
the patterns formed by theftkrence indicator based on order statistics and the tail
exponent, respectively. The results obtained forstparameter indicate that a shift of
the perturbation may exist around the orbit of the corredpapnbig planets.

In order to check these results a statistical test usingehé&a limit theorem for
order statistics was built. Clearly, this result can be usedder to verify if the empir-
ical quantiles from a cell are coming rather from the disttitn characterised by the
parameters previously estimated. Figure 9 shows the rekaltest verifying that the
Zo.99 quantiles around the Jupiter’s orbit are originated fronmeauy-tail distribution,
while the quantiles outside this region are coming rathemfiPareto distribution. It
can be observed that high values for fhevalues are spread around the entire region :
for 81.5% of the cells we cannot reject the null hypothesis. Cleénlg result shows a
far better characterisation of the distribution tails of fherturbations than the test for
the normality assumption performed in the preceding sectio
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Figure 6: Estimation result of the tail exponerfor the perturbation marks around the
big planets : a) Jupiter, b) Saturn, c) Uranus d) Neptune.
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Figure 7: Estimation result of the skewness paramgter the perturbations marks
around Jupiter.
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Figure 8: Estimation result of the scale parameteand shift parametes for the
perturbation marks around Jupiter.

Figure 9: p—values computed for testing if the empirical quantilggy around the
Jupiter’s orbit are originated from a heavy-tail distriouat
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The previous test certifies the perturbations distribwtitails exhibit a stable or
regular variation behaviour. If the perturbations are elttsthe orbit of a big planet
then they have rather a stable behaviour. Figure 10 showg-thialues of ay’—test
implemented for the perturbations with estimated tail e¥qyda < 2. This test allows
to check the perturbations also for their distribution hdtlgan be observed that almost
in all these regions the assumption of stable distributism®t rejected.

o
a) 08 oo D& o2 o oz o0& 0o oo 08 oo D& o2 o oz o0& 0o oo

“ 2 _ =
c) 06 oo D4 o2 o oz 04 0 oo 1 D08 06 o4 02 oo oz 04 oo oo

Figure 10:p-values of g¢? statistical test for the perturbations with< 2 around the
big planets : a) Jupiter, b) Saturn, c) Uranus, d) Neptune.

For the perturbations with a tail exponent greater than 2aleamnative family of
distributions with regularly varying tails was considefedmodelling. Its expressions

is given below :
CK,(Y

T 4
1+ | kZ— w |2 (4)

with C,, the normalising constant,the scale parametes,the location parameter and
a the tail exponent.

The parameter estimation for such distributions was dorsevweral steps. First,
the tail exponentr was considered obtained from the previous algorithm. Sgcon
the location parameter was estimated by the empirical mean of the data samples.
Finally, the normalising constaf,, and the scale parametewere estimated using
the method of moments.

f(2) =
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A x? statistical test was done for the perturbations with 2. The null hypothesis
considered was that the considered perturbations follagalarly varying tails distri-
bution (4) with parameters given by the previously desdipecedure. The obtained
p—values are shown in Figure 11. It can be noticed that in theritgjof considered
cells the null hypothesis is not rejected.

1

Figure 11:p-values of g ? statistical test for the perturbations with> 2 around the
big planets : a) Jupiter, b) Saturn, c) Uranus, d) Neptune.

4 Discussion and interpretation

Some of the features present in the Figures can be explaintbé framework of the
analytical theory of close encounters [24, 16, 2, 29].

Let us consider the magnitude of the perturbations in thaiycof a = a; =
5.2 AU (Jupiter). The colour coding of the Figure 2 represemésmagnitudé of the
perturbation, corresponding to

1 1
Z=—-—+—=oht —h 5
ar + a o Nt ] 5)
wherea andh are respectively the orbital semi-major axis and the orbitargy of the
heliocentric keplerian motion of the comet. The subscrj@ad ; stand, respectively,
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for initial andfinal, i.e., before and after the interaction with Jupiter).

Perturbations at planetary encounters are characterigddrdpe and in general
asymmetric tails, as was shown by various authors [9, 23, dbJanalytical expla-
nation of these features was given by [2] and by [30], and tresequences on the
orbital evolution of comets was discussed by [29].

Let us consider the case of parabolic initial orbits (ouritsrare in fact very close
to parabolic). In thej-cosi plane, the condition for the tails of the energy perturlratio
distribution to be symmetric is:

0 - 1-3+2,/2q/a,cosi
2\/3— 24/20/ap cosi’

wherea,, is the orbital semi major axis of the planet encountered.

However, the finite size of the available perturbation sammplst be taken into
account, as the tails would becoméfiently populated to show any asymmetry only
for very large samples.

A way to take this &ect into account is to consider that irffiéirent regions of the
g-cosi plane the probabilityp for the comet on a parabolic orbit to pass within a given
unperturbed distandefrom the planet would be, according to [24]:

b2 \/3— 24/2q/ay cosi
@ rsini VZ2-20/3,

To take into account the size of the perturbation, we comdit the angley by
which the planetocentric velocity of the comet is rotategdiven by:

apm
tany = P

2 brrb(S— 2w/2q/apcosi)'
we then define a functioh as:

Y
ptan2 (6)
by
apMy7 sini 4/2 — 2q/a, \/3 - 2+/29/ay cosi

Figure 12 shows the level curves bf as can be seen, in it are reproduced the
main features of Figure 2. The arrow-like shape observemhduhe statistical study
can be now observed on the definition domain imposed by (6)s §thenghten our
interpretation of the features of Fig. 2 as due to the gegntclose approaches
described byOpik theory.

f

5 Conclusion and perspectives

In this paper a statistical study of the planetary pertiobaton Oort cloud comets
was carried out. The exploratory analysis of the pertudnatidistributions based on
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Figure 12: Level curves for the functidnaround the semi-major axis of Jupiter.

order statistics indicated the tail behaviour as determifeature. Following this idea,
parametric inference for heavy-tail distributions was liempent. The obtained results
indicated that the perturbations following heavy-tailbd¢adistributions that are not
always symmetric while tending to form a spatial patternisattern is rather arrow-
like shaped and is situated around the orbits of the big pdaretheoretical study was
carried out, and it was observed that this pattern is simitlr the theoretical curves
derived from theDpik theory. The perturbations outside this arrow shapgibrewere
not exhibiting a stable character and they were modelled fayrély of distributions
with regularly varying tails. In both cases, stable and stable distributions, the
modelling choices were confirmed by a statistical test.

Clearly, these choices and the estimation parameter @giimarocedures can be
further improved. Nevertheless, the obtained results gaved indications and also
good reasons for developing a probabilistic methodolodg absimulate such plane-
tary perturbations.
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