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Abstract

The monodromy’s study of Fuchsian hypergeometric differential equa-
tion provides a natural framework for the explicit determination of ra-
tional approximations of polylogarithmic and hypergeometric functions.
Thus, we can obtain almost without calculation explicit determination of
many polynomials and hypergeometric power series related to their Padé
approximations.
From now on, using a classical way, one can study the arithmetic nature
of numbers related to the values taken by these functions.

Résumé

L’étude de la monodromie des equations différentielles hypergéométri-
ques Fuchsiennes fournit un cadre naturel pour la détermination explicite
des approximations rationnelles des fonctions polylogarithmes et de cer-
taines fonctions hypergéométriques. Ceci permet de donner presque sans
calcul certains polynômes et séries hypergéométriques intervenant dans la
détermination des approximants de Padé liés à ces fonctions.
Par un cheminement désormais classique, on peut alors étudier la nature
arithmétique de certains nombres en relation avec les valeurs prises par
ces fonctions en certains points.
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1 Introduction

♠ The aim of this article is to devote to a better understanding of many con-
structions of effective rational approximations to solutions of some linear hyper-
geometric functions from the perspective of the monodromy theory.
The monodromy’s study of Fuchsian hypergeometric differential equation pro-
vides a natural framework for the explicit determination of rational approxima-
tions of polylogarithmic and hypergeometric functions.
Riemann [Rie] initiated this viewpoint in his study of Gauss’s continued fraction
expansion of

2F1

(
a+ 1, b
c+ 1

∣∣∣∣x) /2F1

(
a, b
c

∣∣∣∣x) , (1.1)

(see, also, [Hu1]).
More recently, G.V.Chudnovski [Chu2] has obtained many interesting results
about linear forms involving generalized hypergeometric functions.
This, in turn, reveals a connection between Fuchsian differential equations and
diophantine approximations of special Siegel G-functions.
♣ The arithmetic motivations of searching such effective rational approxima-
tions come for proving irrationality or transcendence of numbers arising as val-
ues of hypergeometric functions, such as

Liq(1/p)) , ζ(2), ζ(3), · · · etc ,

where : Liq(z) =
∑∞
n=1

zn

nq denotes the polylogarithmic function.
We recall that in 1978 R.Apery [Ap] proved that the number

ζ(3) =
∞∑
n=1

1
n3

was irrational.
Before Apery’s result, nothing was known about the arithmetic properties of
the zeta- functions at odd points.
The Apery ’s constructions were generalized to the study of arithmetic of lin-
ear forms in odd zeta functions by Nesterenko, Ball-Rivoal and Zudilin in
[Ne][Ne2],[Ba,Ri],[Zu1].
♣ Like in the explicit continued fraction expansions, we are interested in cases
of the explicit determination of Padé approximations of the first case and the
second case at infinity of a family

S = {f1(z), f2(z), · · · , fq(z)}

where for 1 ≤ k ≤ q , fk(z) are explicitely known by their power series expan-
sions at z =∞

fk(z) =
∞∑
n=1

a(k)
n (1/z)n (1.2)
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For instance , we shall take

fk(z) = Lik(1/z) =
∞∑
n=1

1
nk

(1/z)n

where Lik denotes the polylogarihmic function.
♣ In this paper, we generalize results concerning the simultaneous rational ap-
proximations of these polylogarithmic functions given in [Hu1] and we effectively
construct the system of Padé approximants of first and second kind at z = ∞
to S where for 1 ≤ k ≤ q,

fk(z) =
∞∑
n=1

(1/z)n

(b1 + n)(b2 + n) · · · (bk + n)
(1.3)

Let us remark that

fq−1(z) = (θ − bq)(fq(z)), · · · , f1(z) = (θ − b2)(f2(z)) (1.4)

where, as usual θ denotes the differential operator θz = z d
dz .

In the following (for arithmetical reasons), for 1 ≤ i ≤ q we shall suppose that
bi ∈ Q, bi ≥ 0.
We can check that fq(z) is a holomorphic solution at infinity of the following
inhomogeneous Fuchsian differential equation of order q+ 1,(Euler’s inhomoge-
neous equation ).

(θ − b1)(θ − b2) · · · (θ − bq)(f(z)) =
(−1)q+1

1− z
(1.5)

which is easily related to an hypergeometric differential equation.
This system of functions gives a very special contiguous system of local solutions
at 0 of the previous Fuchsian differential equation.
Indeed fq−1(z), · · · , f1(z) are solutions of fuchsian differentials equations of or-
der q , q − 1, · · · 2.
The polylogarithmic and the Lerch’s functions are particular cases of these func-
tions. (Take b1 = b2 · · · = bq = 0 resp b1 = b2 · · · = bq = x. )
It is easy to establish, by means of the standard - partial fraction decomposition
that these functions fk(z) can be expressed by use of Lerch functions.
To obtain, almost without calculation explicit determination of many polyno-
mials and hypergeometric power series related to their Padé approximations, we
use the method of [Hu1].
We solve in this particular case the realization problem: given the subset,
S = {0, 1,∞} of P1(C) and given local numerical data of rank q on Z =: P1(C)\S
we are asked to explicitly construct and analyze the behavior of Fuchsian dif-
ferential equations that give rise to the given local system.
When the local system has no accessory parameters, that is, when it is ”rigid”
according to the terminology of Katz [Ka], the Fuchsian differential equation
is unique and we obtain a Padé linear form as a special case of the contiguity
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relations.
The rigidity of the local system or, equivalently the differential equation, has
important arithmetic applications.
In particular, the uniqueness of the equation corresponding, respectively, to the
generalized hypergeometric functions, the polylogarithmic and the Lerch func-
tions

Lk(x, z) =
∞∑
n=1

zn

(n+ x)k

[Chu2], [Hu1], [Ne] enables us to establish many new explicit formulae for Padé
approximations.
The polynomials discussed in this paper originate in the construction of simulta-
neous Padé approximation to these hypergeometric power series at the singular
point z =∞.
There are in particular hypergeometric and can also be obtained by the cal-
culation of a multidimensional residues. There are often related to orthogonal
polynomials.
Our general method does not so far directly reproduce or extend arithmetic
results obtained by many cited authors and for the moment this paper may be
view as a methodologic contribution.
In order to make our exposition self-contained, we shall first review in the
next subsections some relevant notations and background material, omitting
the proofs.

2 Padé approximants at infinity

♠ Let a family
S = {1, f1(z), f2(z), · · · , fq(z)} (2.1)

near the point z =∞ on the Riemann sphere P1(C) where these functions have
”good” arithmetic expansions. Here, as in (1,2) for 1 ≤ k ≤ q,fk(z) can be
written

fk(z) =
∞∑
n=1

a(k)
n (1/z)n

There are two kinds of rational approximations than can be used.

Definition 1 Approximations of the first kind
♣ The first problem is to find polynomials

{A0(z), A1(z), · · · , Aq(z)} (2.2)

such that Ai(z) , 1 ≤ i ≤ q are of degrees at most di and such that expanding
at z =∞ we have :

R(z) := A0(z) +A1(z)f1(z) + · · ·Aq(z)fq(z) (2.3)
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where
Ord∞R(z) := σ∞

is at least σ =
∑q
k=1(dk + 1) (which is theorically the best possible order and

is equal to the number of the coefficients of Ak(z).) It is called Hermite Padé
approximant of the first kind (of weights (d1, d2, · · · , dq)).

Uniqueness (up to a multiplicative constant) is not always ensured. It is some-
times useful to have an order σ∞ which is less than σ. We note also that
deg A0(z) ≤ min1≤k≤q dk − 1.
The second one is called Padé approximants of the second kind .

Definition 2 Approximations of the second kind
♣ Let r1, r2, · · · , rq ≥ 0 be integers . We put N =

∑q
j=1 rj.

The problem is to find a polynomial QN (z) not ≡ 0 of degree N such that
there are polynomials PN,j(z) ∈ C[z] of degrees at most N − 1 satisfying the
interpolation conditions

Rj(z) = QN (z)fj(z)− PN,j(z)

Ord∞Rj(z) ≥ rj + 1.
The polynomials PN,j(z) are automatically determined as the polynomial parts
of the corresponding series.
This Padé approximant is called Padé approximant of second kind at infinity.

3 Differential hypergeometric equations

♠ In the following if α ∈ C we put (α)0 = 1 and if n ≥ 1,

(α)n = α(α+ 1)(α+ 2) . . . (α+ n− 1)

(Pochhammer symbol )

q+1Fq

(
a0, a1, · · · , aq
b1, b2, · · · , bq

∣∣∣∣z) (3.1)

=
∞∑
n=0

∏q
j=0(aj)n∏q
j=1(bj)n

zn

n!

denotes the hypergeometric power series.
Provided that no denominator bi is a non positive integer, the series coefficients
are finite and the series converge absolutly in an open disk |z| < 1.
Moreover if

d = <(
q∑

k=1

bk)−<(
q+1∑
k=1

ak) > 0. (3.2)
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It converges on |z| = 1.
This power series is the holomorphic solution at 0 of the following differential
equation of order q + 1

Hyp((a)i, (b)i)

(θ(θ+b1−1)(θ+b2−1) · · · (θ+bq−1)−z(θ+a0)(θ+a2) · · · (θ+aq))y(z) = 0. (3.3)

where θ := z d
dz .

The natural domain of definition of the solutions of the ordinary differential
equation (ODE) is the Riemann -sphere CP1.
The ODE Hyp((a)i, (b)i) has only 0, 1,∞ as regular singular points and q+1Fq
can be continued to a meromorphic function on X = CP1 − {0, 1,∞}, which is
generally multivalued.
In fact, the solutions of Hyp((a)i, (b)i) define a (q + 1)-dimensional space of
multivalued functions or a local Fuchsian system.
These functions are defined on the universal covering of X denoted by X̃.
To avoid multivaluedness CP1 is cut along [1,∞[ and by définition q+1Fq is the
continuation of the power series from the disk D(0, 1) to X̃.
The solution space of any order ODE on CP1 is determined by the characteristic
exponents.
To its q+1−D space of solutions (comprising multivalued analytic functions on
X ) we associate a symbol called Riemann-P-scheme (see [In], [AAR] ) which
indicates the location of the singular points, and the exponents relative to each
singularity.
The equation Hyp((a)i, (b)i) is free of accessory parameters and the Riemann-
P-scheme related to this equation is

P



0 ∞ 1
0 a0 0

1− b1 a1 1
1− b2 a2 2

...
...

...
...

...
...

1− bq aq d

|z


(3.4)

f(z) =q+1 Fq(z) given by (3,1) is the unique power series which belongs to the
zero exponent at z = 0 and satisfies f(0) = 1.
The sum of the 3(q+ 1) exponents equals q(q+1)

2 (Fuchs relation ). So there are
only 3q + 2 independent exponent parameters.
Recall that any q + 1 Fuchsian ODE with three singularities is characterized
by 3q + 2 independent exponents and q(q−1)

2 parameters, which together to the
exponent parameters determine the global monodromy.
The q + 1 exponents of the singularity z = 1 are 0, 1, 2, · · · q , d for some d, up
to an overall additive constant, we say that this equation is of hypergeometric
type.
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The main point is that at z = 1 there exists q holomorphic linearly independent
solutions of Hyp((a)i, (b)i).
This result is very important and is characteristic of the hypergeometric ODE.
When d ∈ Z, one solution at z = 1 is in general logarithmic i.e can be written

ψ(z) = u(z) + (1− z)d[v(z) log(1− z) + w(z)] (3.5)

where u is a polynomial of degree at most q− 1 and v resp w are analytic func-
tions at z = 1.
Now, thanks to an fundamental study of Levelt [Le], which generalizes Riemanns
, we can say that if an Fuchsian ODE , F of order q + 1 which has singularities
0, 1,∞ and no others, has in a neighborhood of the singularity 1 q linearly holo-
morphic independent solutions then, this ODE is an equation hypergeometric
ODE Hyp((a)i, (b)i).
The numbers a0, a1 · · · aq, 0, 1−b1, · · · , 1−bq,0, 1, · · · , q−1, d are called ( Levelt
) exponents at z = 0,z =∞,z = 1.

3.1 Application: monodromy of the Lerch functions

♠ For k ≥ 2, the power series fk(z) can be written

fk(z) =
(1 + b1)(1 + b2) · · · (1 + bk)

z
k+1Fk

(
1, b1 + 1, · · · , bk + 1

b1 + 2, b2 + 2, · · · , bk + 2

∣∣∣∣1/z)
(3.6)

In the following, we suppose that bj − bk ∈ Z.
As we can use partial- fraction decomposition for fk(z), it is sufficient to study
the Lerch function.
This Lerch function (at z =∞ ),

Φ(x, k)(z) =
∞∑
n=1

1
(n+ x)k

(1/z)n

is an holomorphic solution of the Euler’s non-homogeneous equation

(θ − x)k(f(z)) =
(−1)k+1

1− z
(3.7)

or the Fuchsian differential equation of order k + 1

D(1− z)(θ − x)k)(f(z)) = 0

where D denotes as usual the operator D = d
dz .

When we compute the indicial equations at z = 0, z =∞,z = 1, we obtain the
following set of exponents :
• At z = 0,(0, x, x · · · , x)
• At z =∞, (1,−x,−x, · · · ,−x)
• At z = 1,(0, 1, 2 · · · , k − 1, k − 1)
One can conclude that this last exponent is related to a logarithmic solution as
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in the formula (3,7).
A basis of solutions of the equation (1,4) at z =∞ is

B(Φ)x,k) = (Φ(x, k)(z), (1/z)−x, (1/z)−x log (1/z), · · · , (1/z)−x(log (1/z))k−1)

We use of analytic continuation of Φk(z), · · · ,Φ1(z) along loops γ1 and γ0 based
in a vicinity of z = 1 resp z = 0
For instance the analytic continuation along γ1 gives :

Φ(x, k) → Φ(x, k)(z)|γ1 = Φ(x, k)(z) + 2iπ
exp (−2iπx)

(k − 1)!
(log (1/z))k−1 (3.8)

This relation gives the monodromy’s triangular matrix of size (k+1), M(x, k) =
(as,t) given by analytic continuation of the basis B(Φ)x,k along the previous
loops.
We note that

ak+1,k+1 = 2iπ
exp (−2iπx)

(k − 1)!
(3.9)

This monodromy’s matrix is unipotent.

♣ Analytic continuation along the loops :

γ1, γ0 ◦ γ1 · · · , γq−2
0 ◦ γ1, γ

k−1
0 ◦ γ1.

gives the following period’s matrix (Deligne’s period matrix related to mixed
Hodge structure associated to this Lerch function,[DE] ).

Λ(k, x) =


1 Φ(x, k)(z) · · ·Φ(x, k)(z)
0 2iπ(1/z)(−x) 2iπ log(q−1) (1/z)/(q − 1)!(1/z)−(x)

. . .
0 · · · 0 · · · (2iπ)k−2(1/z)(−x) (2iπ)k−1(1/z)(−x) log (1/z)
0 · · · · · · 0 (2iπ)k(1/z)(−x)


(3.10)

4 Local system and construction of Padé ap-
proximation

4.1 Padé approximation of the first kind

♠ We generalize results given by Valisenko. [Val]. In the following, we set
b1 = b2 = · · · bk1 = β1, bk1+1 = · · · = bk1+k2 = β2,,· · · ,
bk1+···+km−1+1 = · · · = bq = βm.
We suppose that

k1 + k2 + · · ·+ km = q
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We consider also the family of Lerch’s functions,

Φbs,kt(z) =
∞∑
n=1

1
(n+ bs)kt

(1/z)n

Using partial fraction decomposition of fp(z), we can write

fp(z) =
t∑

k=1

(
kt∑
s=1

Ek,tΦbs,kt
(z))

Hence, the linear form

R∞(z) = B0(z) +
q∑

k=1

Bk(z)fk(z)

can be written

R∞(z) = A0(z) +
m∑
j=1

(
ks∑
s=1

Aj,s(z)Φbj ,ks
)

We now study this ’Lerch’s ” functions linear form.

4.2 Approximations of Lerch functions

♠ For an integer q ≥ 1,x and z are complex numbers such |z| ≤ 1,x is not a
negative integer, we put

Φ(x, q)(z) =
1

z(1 + x)q q+1Fq

(
1 + x, 1 + x · · · , 1 + x, 1
2 + x, 2 + x, · · · , 2 + x

∣∣1/z) (4.1)

Using the same method as [Hu1] we can find the Padé approximations of the
family S.

S =: C(z){Φ(x, 1)(z), · · · ,Φ(x, q)(z)}.

S is of rank q + 1 over C(z).

Theorem 1 ♣ The remainder R∞(z) is a holomorphic solution of a Linear
Fuchsian differential equation of order q + 1.
If we suppose that the characteristic exponents σ1 and σ0 relative to the analytic
continuation at z = 1 resp z = 0 of R∞(z) satisfy

σ∞ + σ0 + σ1 = (q + 1)n (4.2)

then The remainder

R∞(z) = C∞(n)(1/z)σ∞ q+1Fq

(
σ∞ + σ0, σ∞ + x, σ∞ + x

σ∞ + n+ x+ 1, · · · , σ∞ + n+ x+ 1

∣∣∣∣1/z)
(4.3)
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Where the normalisation’s constant is

C∞(n) =
Γ(σ∞ + x)q(n!)q

Γ(σ∞ + x+ n+ 1)q
Γ(x− σ0 + 1)Γ(x+ σ∞)

Γ(x+ σ∞)
.

The polynomial Aq(z) is hypergeometric namely :

Aq(z) =q+1 Fq

(
−n,−n, · · · ,−n, σ∞ + x

1, 1, · · · , 1, 1 + x− σ0

∣∣∣∣z) (4.4)

The other polynomials are given by the Frobenius method of derivation with
respect to a parameter t. One finds :

Ak(z) =
n∑
k=0

dq−k(ck(n+ t))
dtq−k

|t=0z
k.

The hypergeometric differential equation related to R∞(z) is

(θ − σ0)(θ − x)q − z(θ + σ∞)(θ − n− x)q = 0.

Proof
Let us recall the main steps of this proof which is almost the same as in ([Hu1]).
♣ We investigate the linear form

R∞(z) =
q∑

n=1

Ak(z)Φ(k, x)(z) +A0(z) (4.5)

We put Ord∞R∞(z) = σ∞. S is of rank q + 1 over C(z).
We recall that the basic main idea uses Riemann’s theorem about multivalued
functions [Rie].
In the general case,we consider

Ω = C− {0, 1,∞, z1, · · · zs}

Let Γj be loops in the universal covering Ω̂ starting in a neighborhood of z0

(say of z = 0 ) and surrounding the singular points {0, 1,∞, z1, · · · zs}

Theorem 2 (Riemann’s theorem) Let g1(z), g2(z), · · · gq+1(z) be a system
of multivalued and regular holomorphic functions on Ω that its Wronskian det(g(j)

i 6=
0 and such that the prolongations of g′js along the loops Γj define automorphisms
of the local system spanned by the g′ks.
There exists an q + 1 − th order differential equation with coefficients in C(z)
of the fuchs type such that the system g1(z), g2(z), · · · gq+1(z) of functions is its
fundamental system.

♣ Now to find the Fuchsian linear differential equation of order q + 1 satisfied
by R∞(z) and analytic continuations of R∞(z).
We consider an ”adapted” basis of a local system.
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For our problem, we use of analytic continuation of Φq(z), · · · ,Φ1(z) along loops
γ1 and γ0 based in a vicinity of 1 resp 0.
This “adapted” basis will depend of the following loops :

γ1, γ0 ◦ γ1 · · · , γq−2
0 ◦ γ1, γ

q−1
0 ◦ γ1.

to obtain the matrix of ”periods” Λ(k, x).
Now this form is related to the other linear forms obtained by use of analytic
continuation of R∞(z) by loops based in a vicinity of 1 resp ∞ ( that is mon-
odromy around the points 1 and ∞ )

γ1, γ1 ◦ γ0 · · · , γ1 ◦ γq−2
0 , γ1 ◦ γq−1

0 .

Using the same method as in [Hu1], we can find the exponents of this ODE.
One finds that the exponents are :
• At z =∞,

(σ∞,−n+ x, · · · ,−n+ x).

• At z = 0 one finds
(σ0, x, · · · , x).

σ0 is the exponent given by analytic continuation at z = 0 of R∞(z). In general
it is not an integer.
• At z = 1 ; (0, 1, · · · , q, σ1)
where σ0) is the exponent given by analytic continuation at z = 1 of R∞(z).
In this case, since d = q, σ1 is an integer.
To obtain an hypergeometric differential equation , we suppose that these ex-
ponents given by analytic continuation of R∞(z) satisfy

σ0 + σ∞ + σ1 = (q + 1)n.

As all the exponents ( which depend on the polynomials Ak ) are determined
within a nonnegative integer.
Now, we suppose that these exponents satisfy Fuchs relation :

σ0 + σ∞ + σ1 − qn+
q(q − 1)

2
=
q(q + 1)

2
or :

σ0 + σ∞ + σ1 = (q + 1)n. (4.6)

We can conclude that there do not exist apparent singularities.
This assumption is very important. If it is not satisfied, the differen-
tial equation satisfied by R∞(z) has some apparent singularities and
is very difficult to be computed.
This shows that the exponents are exacty those given by the previous study.
We thus obtain the hypergeometric Riemann scheme related to this problem
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P



0 ∞ 1
σ0 σ∞ 0
x −n− x 1
x −n− x 2
...

...
...

...
...

...
x −n− x σ1

|z


(4.7)

♣ To find the Riemann scheme of the remainder, we consider the map z →
1/z in the previous Riemann scheme and consider,

(1/z)σ∞P



0 ∞ 1
0 σ∞ + σ0 σ1

−σ∞ − x− n σ∞ + x 0
−σ∞ − x− n σ∞ + x 1

...
...

...
...

...
...

−σ∞ − x− n σ∞ + x q − 1

|1/z


(4.8)

This shows that the remainder R∞(z) (within a multiplicative constant ) is
given by

R∞(z) = (1/z)σ∞ q+1Fq

(
σ∞ + x, · · · , σ∞ + x, σ∞ + x, σ∞ + σ0

σ∞ + x+ n+ 1, · · · , σ∞ + n+ x+ 1

∣∣∣∣1/z)
(4.9)

The first quasi-polynomial Aq(z)(1/z)x satisfies also the same hypergeometric
differential equation as R∞(z).
We use of analytic continuation of Φ(q, x)(z), · · · ,Φ(1, x)(z) along loops γ1 and
γ0 based in a vicinity of 1 resp 0.
We use the following loops :

γ1, γ0 ◦ γ1 · · · , γq−2
0 ◦ γ1, γ

q−1
0 ◦ γ1.

to obtain the following relation (related to the matrix Λ(q, x) and the root x of
the indicial equation at z = 0) :

If we denote by B(x) and A(x) the matrices of order q + 1

B(x) = (R∞(z), R1(z), · · · , Rq(z))t

A(x) = (A0(z), A1(z), · · · , Aq(z))t

where ()t denotes the transpose of the matrix.
We find

B(x) = Λ(q, x)A(x) (4.10)
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As Rq(z) = (2iπ)q(1/z)xAq(z)/(q − 1)!, it is now easy to give the polynomial
Aq(z),(up to a non zero multiplicative constant), one finds :

Aq(z) =q+1 Fq

(
−n,−n, · · · ,−n, σ∞ + x

1, 1, · · · , 1, 1 + x− σ0

∣∣∣∣z)
4.3 Multidimensional residues and computation of poly-

nomials

In the previous section we have seen that the computation of the polynomial is
given by the study of the differential hypergeometric equation. This computa-
tion gives polynomials up to a multiplicative constant.
The above study shows for instance that we can take as solution of the differ-
ential equation the particular integral :

R∞(z) = zσ0

∫ 1

0

· · ·
∫ 1

0

∏q
k=1 t

σ∞+x−1
k (1− tk)n

(z − t1t2 · · · tq)σ∞+σ0
dt1 · · · dtq

We use this integral to compute the polynomialAq(z) and the other polynomials.
As analytic continuation along γ1 gives :

R∞(z) → R∞(z)+2iπ.Dzx[(A1(z)+A2(z)(log (1/z))+· · ·Aq(z)
(log (1/z))q−1

(q − 1)!
]

where D = D(σ∞, σ0) denotes a constant to be determined.

But this last expression depends of the deformation of the cycle γ1 when this
path cuts the segment [0, 1].
Suppose now that the point z crosses the cut (1,+∞[) in the plane of tq,and
describes a complete circuit about zt1 · · · tq−1 = 1.In the plane of tq,the singular
point t̃q = z/t1 · · · tq−1 describes a circuit in the same sense about tq = 1.
The new form of the solution of the above integral solution is now found by
deforming the contour of integration so that it never passes through a singular
point of the integrand.
The segment [0, 1]. becomes a path composed by a segment [0, 1− ε] composed
with a line segment [1 − ε, t̃q − ε] , a small circle C(t̃q, ρ) and the line segment
[t̃q + ε, z], (Picard Lefchetz Principle).
We continue along γ0, · · · γq−1

0 . We obtain an iterated integral and we follow by
an integration along closed circles of radius ρ to obtain the value of R∞(z).
A little computation gives :

D.Aq(z) = (−1)σ0+σ∞zσ0×
q−1∏
k=1

∫
|tk|=ρ

tx−1−σ0
k (1−tk)ndt1 · · · dtq−1

∫
|tq−z/t1t2···tq−1|=ρ

tσ∞+x−1
q (1− t)n

(tq − z
t1···tq−1

)σ0+σ∞
dtq

We put : ∫
|tq−z/t1t2···tq−1|=ρ

tσ∞+x−1
q (1− t)n

(tq − z
t1···tq−1

)σ0+σ∞
dtq
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then,

E = 2iπ res(
tσ∞+x−1
q (1− t)n

(tq − z
t1···tq−1

)σ0+σ∞
)|tq=z/t1t2···tq−1

= 2iπ
dσ∞+σ0−1

dtσ∞+σ0−1
q

[tσ∞+x−1
q (1− tq)n]|tq=z/(t1···tq−1)

Now, since ∫
|tk|=ρ

t
−(k+1)
k (1− tk)ndtk = (−1)k

(
n

k

)
and

tσ∞+x−1
q (1− tq)n = (

n∑
k=0

(−1)k
(
n

k

)
)tk+σ∞+x−1
q

gives :

E = (2iπzx−σ0/(σ∞ + σ0 − 1)!)(
n∑
k=0

(−1)qk(
(
n

k

)
)qAk(zk/(t1 · · · tq−1)x+k−1)

where

Ak =
Γ(x+ σ∞)

Γ(x− σ0 + 1)Γ(x+ σ∞)
(x+ σ∞)k

(x+ 1− σ0)k
Hence,this polynomial is obtained by the calculation of a multidimensional
residue.
We find : D = Γ(x+σ∞)

Γ(x−σ0+1)Γ(x+σ∞) and

Aq(z) =q+1 Fq

(
−n,−n, · · · ,−n, σ∞ + x

1, 1, · · · , 1, 1 + x− σ0

∣∣∣∣z)
Remark 1 For x = 1/2 and q = 2,z = −1 we obtain simultaneous approxima-
tions of functions related to the Catalan’s constant [RZ].
If σ∞ = (q + 1)n, we are in the Padé’s case.
If 1− n = 1− σ0 + x+ σ∞ + x , i.e, we obtain the same result as [Riv].
Using the same method as [Hu1], we can obtain the well-poised and the very well
-poised case. For instance , we obtain the same result as [Riv] with the same
polynomial Aq(z) and the same remainder R∞(z).

4.4 The general case

We consider now the general linear form :

R∞(z) = A0(z) +
m∑
j=1

(
ks∑
s=1

As,j(z)fj,s)

where for j = 1 · · ·m,fj,s(z) = Φ(bj , ks))(z)
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Theorem 3 ♣ The remainder R∞(z) is a holomorphic solution of a Linear
Fuchsian differential equation of order q + 1.
If we suppose that the characteristic exponents σ1 and σ0 relative to the analytic
continuation at z = 1 resp z = 0 of R∞(z) satisfy

σ∞ + σ0 + σ1 = (q + 1)n (4.11)

then

R∞(z) = C∞(n)(1/z)σ∞ q+1Fq

(
σ∞ + b1, · · · , σ∞ + bq, σ∞ + σ0

σ∞ + n+ b1 + 1, · · · , σ∞ + n+ bq + 1

∣∣∣∣1/z)
(4.12)

where the normalisation’s constant is

C∞(n) =

∏q
j=1 Γ(σ∞ + bj)(n!)q∏q

j=1 Γ(σ∞ + bj + n+ 1)
.

• R∞(z) can also be given by the following integral :

R∞(z) = zσ0

∫ 1

0

· · ·
∫ 1

0

∏q
j=1 t

σ∞+bj−1
j (1− tj)n

(z − t1t2 · · · tq)σ∞+σ0
dt1 · · · dtq (4.13)

or by the Mellin integral :

1
2iπ

Γ(b1 + σ∞) · · ·Γ(bq + σ∞)
Γ(b1 + n+ σ∞ + 1) · · ·Γ(bq + σ∞ + 1)Γ(σ∞ + σ0)

(4.14)

∫
C

Γ(b1 + s+ σ∞) · · ·Γ(bq + s+ σ∞)Γ(σ∞ + s)
Γ(b1 + σ∞ + s+ n+ 1) · · ·Γ(bq + s+ σ∞ + n+ 1)

.Γ(−s)(−z)sds

for |arg(−z)| < π, where C is any path from −i∞ to i∞ such that the poles of
Γ(−s) lie on the right of C and the poles of Γ(s+ bj lie on the left of C.
For |arg(−z)| < π, where C is any path from −i∞ to i∞ such that the poles of
Γ(−s) lie on the right of C and the poles of Γ(s + bj) and Γ(s + σ∞ + σ0) lie
on the left of C.
♣ If to simplify, we put p = ks (multiplicity of the exponent bm ), the polynomial
Am,p(z) related to fm,ks

(z) is the hypergeometric polynomial :

Am,p(z) =p+1 Fp

(
−n,−n,−n · · · ,−n, σ∞ + bm

1 + bm − σ0, 1, 1, · · · , 1

∣∣∣∣z) (4.15)

Suppose now that bm is a root of multiplicity j of the indicial equation at z =∞.
We put

Am,p(z) =
n∑
j=0

cj(n) zj .

For 1 ≤ l ≤ j, the polynomials Am,p−l(z) are given by :

Am,p−l(z) =
n∑
k=0

dl(cj(n+ t))
dtl

|t=0z
k.
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The hypergeometric differential equation related to R∞(z) is

(θ − σ0)Πq
k=1(θ − bk)− z(θ + σ∞)Πq

k=1(θ − n− bk) = 0.

Proof

♣ Now as in the previous section, to find the Fuchsian linear differential equa-
tion of order q + 1 satisfied by R∞(z) and analytic continuations of R∞(z),we
have to find an ”adapted” basis for the local system related to R∞(z).
For our problem, we consider the analytic continuation of fj,s(z). along loops
γ1 and γ0 based in a vicinity of 1 resp 0.
This “adapted” basis will depend of the following loops :

γ1, γ0 ◦ γ1 · · · , γq−2
0 ◦ γ1, γ

q−1
0 ◦ γ1.

Using the same method as in [Hu1], we can find the exponents of this ODE.
One finds that the exponents are :
• At z =∞,

(σ∞,−n+ b1, · · · ,−n+ bq).

• At z = 0 one finds
(σ0, b1, · · · , bq).

σ0 is the exponent given by analytic continuation at z = 0 of R∞(z). In general
it is not an integer.
• At z = 1 ; (0, 1, · · · , q, σ1)
where σ0) is the exponent given by analytic continuation at z = 1 of R∞(z).
In this case, since d = q, σ1 is an integer.
Now, to obtain an differential hypergeometric equation, we suppose that these
exponents given by analytic continuation of R∞(z) (which depend on the poly-
nomials Ak,s ) are determined within a nonnegative integer satisfy Fuchs
relation :

σ0 + σ∞ + σ1 − qn+
q(q − 1)

2
=
q(q + 1)

2
or :

σ0 + σ∞ + σ1 = (q + 1)n. (4.16)

We can conclude that there do not exist apparent singularities.
We thus obtain the hypergeometric Riemann scheme related to this problem.

P



0 ∞ 1
σ0 σ∞ 0
b1 −n− b1 1
b2 −n− b2 2
...

...
...

...
...

...
bq −n− bq σ1

|z


(4.17)
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♣ To find the Riemann scheme of the remainder, we consider the map z →
1/z in the previous Riemann scheme.

(1/z)σ∞P



0 ∞ 1
σ0 σ∞ + σ0 σ1

−σ∞ − b1 − n σ∞ + b1 0
−σ∞ − b2 − n σ∞ + b2 1

...
...

...
...

...
...

−σ∞ − bq − n σ∞ + bq q − 1

|1/z


(4.18)

Using (3,6) and (3,1) we can conclude that the remainder R∞(z) (within a
multiplicative constant ) is given by

R∞(z) = (1/z)σ∞ q+1Fq

(
σ∞ + b1, · · · , σ∞ + b2, σ∞ + bq, σ∞ + σ0

σ∞ + b1 + n+ 1, · · · , σ∞ + n+ bq + 1

∣∣∣∣1/z)
(4.19)

If we choose the normalisation’s constant of the remainder

C∞(n) =
∏q
k=1(Γ(σ∞ + bk))qΓ(σ∞ + σ0)
Γ(σ∞ + bk + n+ 1)q(n!)q

,

we obtain the following integral formula :

R∞(z) = zσ0

∫ 1

0

· · ·
∫ 1

0

∏q
k=1 t

σ∞+bk−1
k (1− tk)n

(z − t1t2 · · · tq)σ∞+σ0
dt1 · · · dtq

♣ Let us compute the polynomials Am,p(z).

To simplify the notations, we put p = ks (multiplicity of the exponent bm )
and compute the polynomial Am,p(z) related to fm,ks

(z).
As [Hu1],we consider the analytic continuation Rγ1(z) of R∞(z) along the simple
loop γ1.
We use the symbol diag[B1, B2, · · · , Bm] for the diagonally blocked matrix B
with diagonal block Bk, Bk = B(Φ)bk

denoting a monodromy’s matrix of size
ks .
Using this matrix and the relation (3,9), one sees that all the quasi-polynomial
zbmAm,p(z) satisfy the same differential equation as R∞(z) and in particular
all the quasi- analytic solutions related to the exponent bm and the Lerch’s
functions Φ(bm, p)(z) are given by the following Riemann scheme of order p :

zbmP



0 ∞ 1
σ0 − bm σ∞ + bm σ1

0 −n 0
0 −n 1
...

...
...

0 −n p− 2
0 −n p− 1

|z


.
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The quasi -polynomials Am,p(z) which belongs to the ” exponents ”bm ”,(1 ≤
k ≤ q) are the same as in the formula (4,4) where one replaces x by bm.
It can also be written (within a normalisation constant ,)

zbm
q+1Fq

(
−n,−n, · · · ,−n,−n+ bm

1− σ0 + bm, 1 · · · , 1

∣∣∣∣z) .
If,for instance bm is a root of multiplicity j of the indicial equation at z = ∞,
we use Frobenius method for solving Fuchsian differential equation [In] and if
1 ≤ l ≤ j. We put

Am,p(z) =
n∑
j=0

cj(n) zj .

For 1 ≤ l ≤ j, the polynomials Ap−l(z) are given by :

Ap−l(z) =
n∑
k=0

dl(cj(n+ t))
dtl

|t=0z
k

Now, as in the previous section, we can determine the polynomials given by the
analytic continuations of the remainder.

Remark 2 If we put

Pn(b, t)) =
1
n!
t−b(tb+n(1− t)n)(n)

(Jacobi’s polynomial ),[Val].
After integrating by parts,we can show that for σ∞ = nq and σ0 = 0,

R∞(z)=
∫ 1

0

· · ·
∫ 1

0

tβ1
1 · · · t

βj

j Pn(β1, t1)Pn(β2 + n, t2) · · ·Pn(βq + (q − 1)n, tq)
(z − t1t2 · · · tq)

dt1 · · · dtq

5 Padé approximation of the second kind

♠ Let r1 ≥ r2 ≥ · · · ≥ rm ≥ 0 be integers, and for each i = 1, 2, · · ·m let ki, the
number of indices s for which bs = bi.
We put N =

∑m
j=1 rj .

Let b1, b2, · · · , bq be arbitrary nonnegative complex numbers, we give the Padé
approximant of second kind at infinity for f1(z), · · · , fq(z).

Theorem 4 We suppose that σ0 = σ1 = 0 then,

QN (z) =
(b1 + r1 + 1)r1 · · · (bq + rq + 1)rq

r1!r2! · · · rq!
(5.1)

q+1Fq

(
−N, r1 + b1 + 1, · · · , r2 + b2 + 1, rq + bq + 1

b1 + 1, b2 + 1, · · · , bq + 1

∣∣∣∣z)
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which can be written

QN (z) =
N∑
k=0

(−1)k
(
N

k

)(
r1 + k + b1 + 1

r1

)
· · ·
(
r1 + k + bq + 1

rq

)
zk (5.2)

Proof
♣ Using monodromy around z = 1 (analytic continuation along γ1 ) i.e, we see
that

QN (z), (1/z)−b1R1(z), , (1/z)−b2R2(z), · · · (1/z)−bqRq(z)

satisfy the same differential equation .
Using the same proof as the previous section, we can find the exponents at the
singular points z = 0,z =∞ and z = 1.
• At z =∞ the exponents are −N, b1 + r1 + 1, · · · , bq + rq + 1
• At z = 0, σ0,−b1, · · · ,−bq.
• At z = 1, σ1, 0, 1, · · · , q − 1.
If we suppose σ0 + σ1 +

∑q
j=1 rj −N + q(q−1)

2 + q = q(q+1)
2 (Fuchs relation). i.e

σ0 + σ1 +
q∑
j=1

rj = N (5.3)

We can conclude that there do not exist apparent singularities.
If σ0 = σ1 = 0, we obtain an hypergeometric differential equation and conclude
that the Riemann scheme related to QN (z) is

R



0 ∞ 1
0 −N 0
−b1 r1 + b1 + 1 1
−b2 r2 + b2 + 1 2

...
...

...
...

...
...

−bq rq + bq + 1 0

|z


. (5.4)

The analytic solution related to this Riemann scheme is the polynomial QN (z).

QN (z) =q+1 Fq

(
−N, r1 + b1 + 1, · · · , rq + bq + 1

1 + b1, 1 + b2, · · · , 1 + bq

∣∣z)
Now it is easy to find Hata’s formulas concerning simultaneous rational ap-

proximations of Lerch’s functions Φ(k, x), [Ha].
The polynomials Pj are given by

Pj(z) =
1

(rj − 1)!

∫ 1

0

QN (z)−QN (t)
z − t

t−x(log(1/t))rjdt
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and the remainders :

Rj(z) =
1

(rj − 1)!

∫ 1

0

QN (t)
z − t

t−x(log(1/t))rjdt

We can see that if we expand the left side of Rj(z) in power of 1/z we have

ordz=∞Rj(z) ≥ rj + 1

We can also write :

QN (z) =
1

r1!r2! · · · rq!
((

q∏
k=1

z−xDrkzx+rk)(1− z)N ) (5.5)

If r1 ≥ r2 ≥ · · · ≥ rq, , one obtains simultaneous rational approximations of

1, L1(1/z), · · ·Liq(1/z)

(see [Hu1]) and [Zu3]) where we found the hypergeometric polynomial of degree
N ,

q+1Fq

(
−N, r1 + 1, · · · , r2 + 1, rq + 1

1, 1, · · · , 1

∣∣∣∣z)

=
n∑
k=0

(
N

k

)(
r1 + k

k

)
· · ·
(
rq + k

k

)
(−1)kzk

If we consider the derivation’s operator D = d
dz , since

Dkzk = (θ + 1) · · · (θ + k),

we can write the polynomial QN (z) as

QN (z) =
1

r1!r2! · · · rq!
{
q∏

k=1

(θ+ 1)(θ+ 2) · · · (θ+ rk) q+1Fq

(
−N, 1, 1, · · · 1
1, 1, · · · , 1, 1

∣∣z) .
(5.6)

and the relation

1F0

(
−N
−

∣∣z) =q+1 Fq

(
−N, 1, 1, · · · 1
1, 1, · · · , 1, 1

∣∣z)
gives for this hypergeometric polynomial the formula :

QN (z) =
1

r1!r2! · · · rq!
(
q∏

k=1

Drkzrk)(1− z)N ) (5.7)

The differential hypergeometric equation satisfied by QN (z) and the remainders
Rk(z) is

θq+1 − z(θ −N)(θ + r1 + 1) · · · (θ + rq + 1) = 0.
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Since the exponents at the singular point z = 0 are all 0, the monodromy around
z = 0 is maximally unipotent.
♣ The solutions of this differential equation are given by the use inverse-Mellin
transform.
To find the polynomial’ (given by analytic solution at 0 of this equation ). (See
[Iw]). One puts

f(z) =
1

2iπ

∫
C

g(t)(−z)tdt.

We must find a condition on the function g(t) under which this inverse Mellin
transform converges and gives a solution of this differential equation (.Here
C denotes a vertical line with possible deviation to avoid singularities of the
integrand ).
We find that g(t) is a solution of the difference equation :

g(t+ 1) = − (t−N)(t+ r1 + 1) · · · ((t+ rq + 1)
(t+ 1)q+1

.

We take a path of integration C as mentionned above.
Then if

lim
τ→∞

(t2g(t)(−z)t) = 0,

(t = σ + iτ) holds uniformly as t → ∞ in any finite vertical trip, then the
integral converges uniformly with respect to z and the above calculation can be
legitimated.
In the following, we put r1 = r2 = · · · rq = n ; N = qn and we consider the
solutions of this differential equation belonging to the exponent n+1 at infinity.
Since u = 1/z gives the transformation θu = −θz, we obtain the following
differential equation :

(θu + qn)(θu − n− 1)q − u(θu)q+1 = 0

g(t) satisfies

g(t+ 1) = −g(t)
tq+1

(t+ qn)(t− n− 1)q

and we can take

g(t) =
Γ(t)q+1

Γ(t+ qn+ 1)Γ(t− n)q
.

We simplify g(t) and we find the rational function

R(t) =
((t− 1)(t− 2) · · · (t− n))q

t(t+ 1) · · · (t+ qn)
.

We now set t = s + n + 1 to find the integral form of the solutions for the
previous differential equation

F (z) =
Γ(s+ n+ 1)q+1

Γ(s+ 1)qΓ(s+ (q + 1)n+ 1)q!
.
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1
2iπ

∫ C+i∞

C−i∞
(R(s+ n+ 1)(

π

sin(πt)
)q+1(−1/z)s+n+1ds

C is an arbitrary constant in the interval 0 < C < n+ 1.
Using the residue’s theorem we find :

F (z) = R1(z) +R2(z) log(1/z) + · · ·Rq(z) log(1/z)q

This gives a sense to the substitution z = 1.
In particular, we obtain for q = 2 and for z = −1 simultaneous rational approx-
imations of log 2,−π

2

12 and, for z = 1 , q = 3 simultaneous approximations for
ζ(2) and ζ(3).

Remark 3 ♠ As for the simultaneous approximations of

Lz(1), Li2(z), · · ·Liq(z),

given in [Hu1] and [Hu2], we can use the method of perturbing power series for
the construction of new differential equations to give the simultaneous rational
approximations of the Lerch function.
In this case,we consider

Le1(z, t) =
∞∑
n=1

(1/z)n+t

(n+ x+ t)

and for k ≥ 1,

Lek(z) =
1
k!
∂k(Le1(z, t))

∂tk
|t=0.

We obtain the same formulas as in the previous study.

5.1 The method of perturbing power series and the con-
struction of new differential equations

♠ In [Zu3], Zudilin gives simultaneous approximations of

Li1(1/z), Li2(1/z), Li3(1/z)

but where the numerator Pj(z) are replaced by the rational function Pj(z)
(1−z)n .

resp Pj(z)
(1−z)2n . Using our study, we can generalize his result.

♣ We put

Lip(z, t) =
∞∑
n=1

zn+t

(n+ t)p

and for k ≥ 1,

Lkp(z) =
1
k!
∂k(Lp( 1

z , t))
∂tk

|t=0.



II – 24

We consider

R(z) =
1
q!
∂q(R(z, t))

∂tq
|t=0

R(z, t) = Q(z)L1(1/z, t)−
P (z, t)( 1

z )t

(1− z)(q−1)n+1

where Q(z) = (1 − z)q(n−1)Qn(z),Qn(z) being a polynomial of degree n and
P (z, t) ∈ C(t)[z] is of degree qn− 1 in z.

R(z) =
q∑
j=1

(−1)j
(
k
j

)
(q − j)!

[Q(z)Li1+j(1/z)−
∂jP (z, t)
∂tj

|t=0](log 1/z)q−j) (5.8)

but if we write R(z, t) = S(z, t)(1/z)t where

S(z, t) =
∞∑

n=σ∞

an(t)(1/z)n

and an(t) ∈ C(t) , then

R(z) =
1
q!

(
q∑
j=0

(
q

j

)
(
∂jS(z, t)
∂tj

|t=0)(log 1/z)q−j) (5.9)

♣ We obtain simultaneous rational approximations of

Li1(1/z), Li2(1/z), · · · , Liq(1/z).

The number of coefficients of the polynomial Qn(z) is now n+ 1.
The exponents related to R(z) are now :
• At z =∞ are (−qn, n+ 1, · · ·n+ 1).
• At z = 0, (σ0, 0, · · · , 0).
• At z = 1,(q(n− 1), q(n− 1) + 1, · · · , q(n− 1) + q − 1, σ1)
We consider now the differential equation satisfied by R̃(z) = (1−z)−q(n−1)R(z).
the exponents related to R̃(z) are :
• At z =∞ are (−n, n+ 1, · · ·n+ 1).
• At z = 0, (σ0, 0, · · · , 0).
• At z = 1,(0, 1, · · · , q − 1, σ1)
To obtain an hypergeometric differential equation, the following relation must
be satisfied

σ0 − n+ q(n+ 1) + σ1 +
q(q − 1)

2
=
q(q + 1)

2
i.e. σ0 + σ1 − q(n− 1) = 0.(Fuchs relation)
If, for instance we choose σ0 = 0 and σ1 = −(q− 1)n, this condition is satisfied.

We can deduce that : R(z) and Qn(z) have the following Riemann scheme
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R



0 ∞ 1
0 −n 0
0 n+ 1 1
0 n+ 1 2
...

...
...

...
...

...
0 n+ 1 −(q − 1)n

|z


(5.10)

We then find

Qn(z) =q+1 Fq

(
−n, n+ 1, n+ 1, · · ·n+ 1

1, 1, · · · , 1, 1
∣∣z) .

or
n∑
k=0

(−1)k
(
n

k

)(
n+ k

n

)q
zk (5.11)

For q = 2 and z = 1 thanks to Thomae’s transformation of 3F2(1)-hypergeometric
series, namely,

n∑
k=0

(−1)k
(
n

k

)(
n+ k

n

)2

= (−1)n
n∑
k=0

(−1)k
(
n

k

)2(
n+ k

n

)
Zudilin in [Zu3] has remarked that the latter sum gives (up to the sign factor)
the denominators of Apéry’s approximations of ζ(2).
We can use the same method to find the rational function related to the remain-
der given in [Zu3]

R(t) =
((t− 1)(t− 2) · · · (t− n))q

n!(t+ 1)(t+ 2) · · · (t+ qn)
.

The Barnes integral that we consider is

1
2iπ

∫ C+i∞

C−i∞
R(t+ n+ 1)(

π

sin(πt)
)q+1(−1/z)t+n+1dt

C is an arbitrary constant in the interval 0 < C < n+1. (We can take C = −1/2
).
This result coincides with Zudilin’result for q = 2 and q = 3.
But as in [Zu3], no new irrationality and linear independence results are pre-
sented. We just tried to give some sense to certain hypergeometric series that
are expressed in terms in polylogarithms and are divergent when one formally
plugs z with |z| = 1.
The novelty is the use of differential equation to give a systematic procedure
to give such simultaneous rational approximations of polylogarithmic or Lerch’s
functions.

We use the same construction to find the Apery’s differential equation.
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5.2 Differential equations and simultaneous approxima-
tions of ζ(2) and ζ(3)

♠ For p = 2, k = 1, we obtain the Apery’s case. We use the linear form

R(z) =
∂

∂t
((A2)(z)Li2(1/z, t) +A1(z)Li1(1/z, t) +A0(z, t)(

1
zt

)|t=0

where A0(z, t) ∈ C(t)[z].
The differential operator related to this function is (for more details see [Hu1]).
In this case, using the previous study it is not difficult to show that the Riemann
scheme is given by: (see also [Gu] )

R


0 ∞ 1
0 −n 0
0 −n 1
0 n+ 1 2
0 n+ 1 1

|z

 . (5.12)

It is related to the hypergeometric differential equation

θ4 − z(θ − n)2(θ + n+ 1)2 = 0. (5.13)

The monodromy around z = 0 is maximally unipotent ! the Apéry’s polynomial
[Ap] is given by

A3(z) = 4F3

(
−n,−n, n+ 1, n+ 1

1, 1, 1
∣∣z) . (5.14)

This differential equation is also unipotent.
The previous Riemann scheme can be written :

1
zn+1

R


0 ∞ 1
0 n+ 1 0
0 n+ 1 1

−2n− 1 n+ 1 2
−2n− 1 n+ 1 1

|1/z

 . (5.15)

The nonlogarithmic solution is thus given by :

1
zn+1 4F3

(
n+ 1, n+ 1, n+ 1, n+ 1

1, 2n+ 2, 2n+ 2
∣∣1
z

)
(5.16)

(within a multiplicative constant).
If one puts, R1(z) = ( (n!4

((2n+1)!)2
1

zn+1 )r1(z) and denoting by

r1(z) =
∞∑
n=0

cn(1/z)n,
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the logarithmic function is given by r2(z) = ∂
∂t (
∑∞
k=0 cn+t(1/z)n+t)|t=0.

♣ Let us recall the sketch of the method given in [Gu] and [Ne] to find the
solutions of this differential equation.
The ’Apery’s polynomial’ are given by the use of inverse-Mellin transform (given
by analytic solution at 0 of (6,3). Setting

f(z) =
1

2iπ

∫
C

g(t)(−z)tdt,

we find a condition on the function g(t) under which this inverse Mellin trans-
form converges and gives a solution of this differential equation. Here C denotes
a vertical line with possible deviation to avoid singularities of the integrand.
We find that g(t) is a solution of the difference equation

g(t+ 1) = −g(t)
(t− n)2(t+ n+ 1)2

(t+ 1)4

We take a path of integration C as mentionned above.
If

lim
τ→∞

(t2g(t)(−z)t) = 0,

(t = σ + iτ) holds uniformly as t → ∞ in any finite vertical trip, then the
integral converges uniformly with respect to z.
For instance with

g(t) =
Γ(−t)Γ(1 + n+ t)2

Γ(1 + t)3Γ(1 + n− t)2

after simplification, we find:

f(z) =
1

2iπ

∫
C

R(t)(−z)tdt

R(t) = [
(t− 1)(t− 2) · · · (t− n)

(t)(t+ 1) · · · (t+ n)
]2.

To find the remainder (i.e.) the solution belonging to the exponent n+ 1 at
∞, we set u = 1/z, the new equation becomes

uθ4
u − (θu + n)2(θu − n− 1)2 = 0

and

g(u) =
Γ(u)4

Γ(u+ n+ 1)2Γ(u− n)2
=

Γ(u)4Γ(1 + n− u)2

Γ(u+ n+ 1)2
(

π

sin(πu)
)2.

We can write f(u) as

f(u) =
1

2iπ

∫
C

g(t)(−u)tdt

or
f(u) =

1
2iπ

∫
C

R(t)(
π

sin(πt)
)2(−u)tdt

C is the vertical line <u = C, 0 < C < n+ 1, oriented from top to the bottom.
(See [Ne] for the end of the proof).
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deux fonctions hypergéométriques de Gauss.C.R.Acad.Sc.Paris, Série A,
302, 603-606.(1986).

[In] Ince, E.L., Ordinary differential equations.Dover.

[Iw] Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M., From
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