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Abstract

One hopes that the Q-algebra of periods of mixed Tate motives over
SpecZ is generated by values of iterated integrals on P*(C) \ {0, 1,00} in

— —
one forms 4% and zdfl from 01 to 10. These numbers are also called multi

zeta values. In this note we give a sketch of a proof, assuming motivic for-
malism, that the Q-algebra of periods of mixed Tate motives over SpecZ
is generated by linear combinations with rational coefficients of iterated

5
integrals on P*(C)\ {0, 1, —1, 00} in one forms %, %= and Z‘izl from 01 to

N
10, which are unramified everywhere. We shall discuss also l-adic analog
of this result and also some other examples.
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0 Introduction

0.1. One hopes that the Q-algebra of periods of mixed Tate motives over
SpecZ is generated by values of iterated integrals on P!(C) \ {0,1,00} in one
forms % and zd—l from O_i to 1_() These numbers are also called multi zeta
values. In this note we give a sketch of a proof, assuming motivic formalism,
that the Q-algebra of periods of mixed Tate motives over SpecZ is generated
by linear combinations with rational coefficients of iterated integrals on P*(C)\

— —
{0,1,—1,00} in one forms 4, 4= and dfl from 01 to 10, which are unramified

z? z—1 z
everywhere.
We give also a criterium when a linear combination with rational coefficients

of iterated integrals on P'(C)\ {0, 1, —1,00} in one forms %, 2= and 2% from

z ) z—1 z+1
— —
01 to 10 is unramified everywhere. Such result may be useful even if finally one

shows that iterated integrals on P*(C)\ {0, 1, 00} in one forms % and -%% from

— —
01 to 10 generate the Q-algebra of mixed Tate motives over SpecZ.

These results have their analogs in l-adic realizations. In fact we shall study
[-adic situation first and in more details. The [-adic situation is easier conceptu-
ally, because the Galois group G of a number field K and its various weighted
Tate Q;-completions replace the motivic fundamental group of the category of
mixed Tate motives over Spec Ok s, which is perhaps still a conjectural object.

We shall consider weighted Tate representations of 7! (Spec Ok s; SpecK) in
finite dimensional Q;-vector spaces. The universal proalgebraic group over Q; by
which such representations factorize we shall denote by G(Ok s;1). The kernel
of the projection G(Ok s;1) — G, we denote by U(Ok s;1). The associated
graded Lie algebra of U(O s;1) with respect of the weight filtration we denote
by grw Lield(Ok s;1).

We assume that S contains all finite places of K lying over (I). Then the
group G(Ok,s;1) is isomorphic to the conjectural motivic fundamental group of
the tannakian category of mixed Tate motives over SpecOg s tensored with Q
(see [5] and [6]). There it is also considered the case when S does not contain
all finite places of K lying over (I). However the construction is decidely more
complicated and we do not understand it very well. As we consider also the case
of arbitrary S we shall modify slightly the graded Lie algebra gry Lield (Ok s; 1)
to serve our proposal. This is described briefly below.

Let S be a finite set of finite places of K. A non trivial [-adic weighted Tate
representation of G is ramified at all finite places of K which lie over (I). There-
fore we must consider the weighted Tate Q;-completion of 7} (Spec Ok s; SpecK),
where S is a union of S and all finite places of K lying over (I). This has an
effect that the Lie algebra gry Lield(Ok s;1) has more generators in degree 1
than the corresponding Lie algebra of the tannakian category of mixed Tate
motives over Spec Ok, s. To get rid of these additional generators in degree 1
we shall define a homogenous Lie ideal ([ | [}k g of grw Lield (Ok s;1) and then



the quotient Lie algebra
gTwLZ'GZ/[(OK’S)l = geriGU(OKys; l)/<[ ‘ l)K,S .

The Lie algebra grw Lield(Ok s); is also graded, i.e.

oo

grw Lield (O s), = @(QTWLieu(OK,S)l)i~

i=1

We shall show that it has a correct number of generators.
We define a dual of gry Lield(Ok,s); setting
(grw Lield (Ok s)1)° := &2, (grw Lield (Ok 5)1); -

The vector space (grw Lield(Ok s);)° is an l-adic analog of the generators of
the Q-algebra of periods of mixed Tate motives over Spec Ok s.

In [9] we have studied the action of Gg on m; (]P’(l@ \ {0,1,—-1,00}; (Tl) After

N
standard embedding of 7, (Pé\{(), 1,—1,00};01) into the Q;-algebra Q;{{X, Yy, Y1}}
and passing to associated graded Lie algebra we get a Lie algebra representation

1
Dy ngLieLl(Z[§],l) — Der*Lie(X, Yy, Y1),

where Der*Lie(X,Yo,Y1) is a Lie algebra of special derivations of a free Lie
algebra Lie(X,Yp, Y1). The Lie ideal (I | [)qg,(2) is contained in the kernel of D
Hence we get a morphism

1
LR ngLieZ/l(Z[g])l — Der*Lie(X, Yy, Y1).

Theorem 15.5.3 from [9] can be interpreted in the following way.

Theorem A. The vector space (gry Lield(Z[3]);)° is generated by the coeffi-
cients of the representation (I)(ﬁ‘

We shall show that the natural map
1
grw Liel(Z[3])i — grw Liel (Z);,

induced by the inclusion Z C Z[%], is a surjective morphism of Lie algebras.
Let I(Z[3] : Z) be its kernel. We say that f € (grw Lield(Z[3]);)° is unram-
ified everywhere if f(I(Z[3] : Z)) = 0. Our next result is then the immediate
consequence of Theorem A.

<

Corollary B. The vector space (grw Lield(Z);)° is generated by these linear
combinations of coefficients of the representation (I)(ﬁ’ which are unramified

everywhere.
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The result mentioned at the beginning of the section is the Hodge-de Rham
analogous of Corollary B.

We shall also consider the following situation. Let L be a finite Galois
extension of K. We assume that a pair (Vz,v) or a triple (Vi,z,v) is defined
over L. Then we get a representation of G, on 71 (Vz;v) or m(Vg; z,v). We shall
define what it means that a coefficient of a such representation is defined over
K.

Then, working in Hodge-de Rham realization and assuming motivic formal-
ism, one can show that the Q-algebra of periods of mixed Tate motives over
Spec Z[%] is generated by linear combinations with rational coefficients of it-

erated integrals on P'(C) \ ({0,00} U p3) in one forms 4, 2= Zizﬁe.’ Zﬁ—zg

P — —
(&3 = e%) from 01 to 10, which are defined over Q. However in this paper we
shall show only an [-adic analog of that result.

—
Remark. A pair (P!\ {0,1,00},03) ramifies only at (3), hence periods of a

A
mixed Tate motive associated with 1 (P*(C) \ {0,1, c0};03) are also periods of
mixed Tate motives over Spec Z[%], but we do not know if in this way we shall
get all such periods.

The final aim is to show that the vector space (grw Lield(Ok s);)° is gener-
ated by linear combinations of coefficients, which are unramified outside S and
defined over K of representations of Gy, for various L finite Galois extensions
of K on fundamental groups or on torsors of paths of a projective line minus a
finite number of points or perhaps some other varieties. This will imply (by the
very definition) that all mixed Tate representations of gry Lield(Og s); are of
geometric origin. We are however very far from this aim.

Then we must pass from Lie algebra representations of gry Lield (Ok g); to
the representation of the corresponding group in order to show that any mixed
Tate representation of Gk is of geometric origin. This part of the problem is
not studied here.

The results of this paper where presented in a seminar talk in Lille in May
2009 and then at the end of my lectures at the summer school at Galatasaray
University in Istanbul in June 2009.

While finishing this paper the author has a delegation in CNRS in Lille at the
Laboratoire, Paul Painlevé and he would like to thank very much the director,
Professor Jean D’ Almeida for accepting him in the Painleve Laboratory. Thanks
are also due to Professor Douai who helped me to get this delegation.

In [11] we were studying related questions. In the sequel we make some
comments concerning [11], as the results presented there are not complete.
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1 Weighted Tate completions of Galois groups

Let K be a number field and let S a finite set of finite places of K. Let Ok s
be the ring of S-integers in K, i.e.

Ok.s ;:{% | a,b€ Ok, b pfor allp ¢ S}

Let us fix a rational prime [. We denote by {[ | [}x a set of finite places of K
lying over a prime ideal (1) of Z.

Let G(Ok su{iji}« ;1) be the weighted Tate Q;-completion of the étale funda-
mental group 7} (Spec Ok sufiy,; SpeckK). The group G(Ok sufiy,;l) is an
affine, pro-algebraic group over QQ; equipped with the homomorphism

71 (Spec Ok suqiiy s SpecK) — G(Ok suqiiy s D(Q)

with a Zariski dense image, such that any weighted Tate finite dimensional Q;-
representation of 7} (Spec O sufji} s : SpecK) factors through GOk, sufiiye;:l)-
We point out that weighted Tate finite dimensional Q;-representations of
7t (Spec 0K7SU{[‘l}K;Specf() correspond to representations of G unramified
outside SU{l'| I} k.

There is an exact sequence

1= UOk suqiiygil) = GOk supqiygil) = Gm — 1.

The kernel U(Ok sufiiyx;!) is a prounipotent affine group over @Q; equipped
with the weight filtration {W_o,U(Ok sugiiy«;l)}ien. The associated graded
Lie algebra

o

grw Liel (O suqiiy 3 1) = @ grw Lield (O sugiiy 51

i=1

where

grw Liel (O suqiiy 5 Di = Weaild(Ok suquiy 3 ) /W-20i+ 1)U (O suqiiy «51),

is a free Lie algebra.
In degree 1 there are functorial isomorphisms

(1.1.a.) grw Liel (Ok suqiiy s D)1 = Hom(O% i1y Qo)-

and
(1.1.b.)

(grw Lield (O sugiiye: D1)* = Ok soqy e ®Q ~ H' (SpecOk suqiy e Qu(1))-

In degree i > 1 there are functorial isomorphisms
(1.1.e)

(grw Liel (O suquiy e 1) /T grw Lied (O suquiy i 1)

*

~ H' (G Q7).

%



(see [3], [6]).

Let us assume that a pair (V,v) is defined over K and has good reduction
outside S. Then the representation of G on pro-l quotient of 7! (Viz;v) is
unramified outside S U {[ | I} and is ramified at all finite places of K which
lie over (7). This has an effect that the Lie algebra gry Lield (O sufiiy ;1) has
more generators in degree 1 than the corresponding Lie algebra of the tannakian
category of mixed Tate motives over SpecOk s.

We shall show below how to kill these additional generators corresponding
to finite places of K lying over (I), which are not in S.

Let u € O sy, and let k(u) : Gxg — Z; be the Kummer character of u.
The representation

1 0
Gk 20— ( ) € GLa(Qy)
r(u)(o)  x(o)
is an [-adic weighted Tate representation of G'x unramified outside SU{l | I},

i.e. it is an [-adic weighted Tate representation of 7} (Spec Ok suqi}; SpecK).
Hence the Kummer character x(u) we can view also as a homomorphism

w(u) : grw Lield (O suqiiy g 11 — Qi
by 1.1.b. Let us set

(M Dks:= m (KST‘(H(U) s grLield (Og suquiy ;1)1 — (@l))

ueOy o

and let ([ | [) s be a Lie ideal of gry Lield (Ok sugiiy ;1) generated by elements
of ([ | l)st.
Proposition 1.2.

i) The quotient Lie algebra

grw Lield (O suqiiy e D/ Di,s

is graded.

ii) The quotient Lie algebra grLield(Ok suqiin;1)/(l | Dk,s is free, freely
generated by n; = dimg(O% ¢ ® Q) elements in degree 1, and by n; =
dimg, (H'(Gk;Qu(i)) elements in degree i > 1.

iii) Let ai1,...,a,41 be K-points of PL and let V := PL \ {a,...,ans1}-
Let z and v be K-points of V' or tangential points defined over K. Let
us assume that a pair (V,v) (resp. a triple (V, z,v)) has good reduction
outside S. Then the morphism of Lie algebras

grw Liepy,, : grw Lield (O suquiy ;1) — Der*Lie(Xy, ..., Xy,)



resp.

grw Lieyy,. » : grw Lield (O suqujiy 3 1) —
Lie(X1,...,Xn)xDer* Lie(X1, ..., X,)

deduced from the action of G on m (Vi;v) (resp. on 7(Vi; z,v)) factors
through the Lie algebra gryw Lield (Ok suqin 3 1)/(t| 1) k,s-

Proof. The Lie ideal (I | [)x s of the Lie algebra grw Lield(Ok sufii}x;!)
is generated by elements of degree 1, hence it is homogenous. Therefore the
quotient Lie algebra grw Lield (O, suqiy«;1)/(! | 1)k s has a natural grading
induced from that of gry Lield(Ok suqiin ;1)

Let us choose u1, ..., u, € Ok g (p =dimOj s®Q) such that u1 ®1,...,u,®
lis abase of O ¢®Q. Let 21,...,24 € O}(’SU{[“}K be such that u; ®1,...,u,®
1,21®1,...,2,®1is a base of (O;(,SU{I\I}K)®Q' Let a1,...,0p,51,...,84 be a
base of grw Lield (O, suq1)1} 3 )1 dual to the Kummer characters x(uy), .. ., £(up),
k(z1),...,k(zy). Then fy,..., B, generate the Lie ideal (I | I)k g. The point ii)
follows now immediately from the fact that the Lie algebra grw Lield (O suqiji} 3 ()
is free, freely generated by elements aq,...,ap, B1,..., B, in degree 1 and by n;
generators in degrees ¢ > 1 ( see [5] and [6]).

Let us assume that a pair (V,v) (resp. a triple (V, z,v)) has good reduction
outside S. We shall show in the next lemma that then the morphism gry Liepy,
(resp. grwLieyy, ,,) in degree 1 is given by Kummer characters of elements
belonging to O . This implies that the morphism vanishes on (I | Ik s, hence
it vanishes on (I | I) x,s. Hence the point iii) follows immediately. O

Lemma 1.2.1. Let us assume that a pair (V,v) (resp. atriple (V, z,v)) has good
reduction outside S. Then the morphism gry Liepy,, (resp. grw Liey, , ,) in
degree 1 is given by Kummer characters of elements belonging to O .

Proof. For simplicity we shall consider only a pair (V,v), where v is a K-
point. The definition of good reduction at a finite place p depends only on
an isomorphism class of (V,v) over K (see [10], definition 17.5), hence we can
assume that a; =0, as =1 and a,4+1 = oc.

The morphism grw Liegy,, is given in degre 1 by Kummer characters (=)
fori # kand i,k € {1,2,...,n} (see [10], 17.10.a). Let S(V,v) be a set of finite
places p of K such that there exists a pair (i, k) satisfying ¢ # k and such that
p valuation of ﬁ is different, from 0. Then clearly ‘z}:;k" € Ok, S(Vyw) for all
pair (i, k) with ¢ # k.

For the pair (V,v) the notion of good reduction at p and strong good reduc-
tion at p coincide (see [10], Definitions 17.4, 17.5 and Corollary 17.18). It follows
from Lemma 17.15 in [10] that p ¢ S implies p ¢ S(V,v). Hence S(V,v) C S.
Therefore ¢=2% € O ¢ for all pairs (i, k) with i # k. O

Definition 1.3. We set

grw Lield(Ok,s)1 := grw Lield (Ok sugiiy 3 1)/ Dk,s-
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Let S and S; be finite disjoint sets of finite places of K. The inclusion of rings

Ok, sufiiye = OKk,sus,U{1|1}x
induces morphisms of weighted Tate Q;-completions

wﬁ;ﬁﬁfﬁﬁﬂj““{ 1G(Ok, susiufiiyics D) — G(Ok suqy s 1)

and
K,5U8,U{1]l
T sopin U0k sus,uuie D) — Uk sUgy -

After passing to associated graded Lie algebras with respect to weight filtrations
one gets a morphism of associated graded Lie algebras

ngLieﬂgjgﬁf[l‘lLi'E'l}K grw Lield(Ok sus,uiiiy 3 1) — grw Lield (Ok suqiiy 3 1)-

Proposition 1.4. Let S and S; be finite disjoint sets of finite places of K. The
inclusion of rings Ok suqiiyx = Ok, sus,u{ii}x induces a morphism of graded
Lie algebras

(gerieﬂ'IIg:gUSl)l ZgTwLie(OKﬁusl)l — gTwLie(OKﬂ)l.

Proof. The inclusion of rings

i Ok sufing = Ok, sus,0{1} «
induces a morphism of associated graded Lie algebras

gTWLieﬂﬁfgﬁftlwﬁ{zjll}K rgrw Lield (Ok sus,uqijiy i 1) — grw Lield (Ok soqiiy 3 1)-

To simplify the notation we denote by 7 the degree 1 component of the morphism

S K,SUS U{I|) ke . .
ngLZeWK,Su{[\l}K . In degree 1 we have a commutative diagram

grw Lie(Ok sus,uqiiye; D1 — grwLie((Ox suquiye: D1

Hom(O% sus,uqnye @) — Hom(Ok siqy s Q1)

by (1.1.a.). Let z € grw Lie(Ok sus,ufiji}«; 1)1 be such that x(u)(z) = 0 for all
u € Ok sus,- Then r(u)(m(2)) = 0 for all u € O ¢ because of the commuta-
tivity of the diagram.

Hence m maps ([ | {)k sus, into (I'| )k s. This implies that the morphism
QTWLZ'W??S?II\%{;”}K  grw Lie(Ok sus,uqiiy i 1) — grw Lie(Ok suiy ;1)
induces a morphism of graded Lie algebras

(g’l“wLieﬂ'IIg:gUSl)l :gTWLie(OK,Susl)l — ngLie(OKs)l.
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0

It follows from (1.1.a) and from the construction of the Lie algebra
grw Lield(Og,s); that the degree 1 part of the morphism from Proposition 1.4
inserts into the following commutative diagram

0 — Hom(O% sus,/Ok,5;Q) — Hom(Ok sus,;Q) — Hom(O%k Q) — 0

- - -

1 — (k‘e?“(g?“wLieﬂ'Ilgzgusl)l)l — (gTwLieU(OKysUsl)l)l — (gerieZ/l(OK,s)l)l —0.

Definition 1.5. Let I(Ok sus, : Ok,s) be a Lie ideal of a Lie algebra

grw Lield(Ok sus, )i generated by (ker(ngLieﬂ?gUSl)l)l.

Proposition 1.6. The morphism (ngLiew?:gUSl)l induces an isomorphism

of graded Lie algebras

ﬁﬁj?usl : grw Lield (Ok sus, )i/I(Ok sus, : Ok,s) — grw Lield(Ok s);.

Proof. The Lie ideal I(Ok sus, : Ok,s) is generated by elements of degree
1. Hence the quotient Lie algebra carries a natural induced grading and the
morphism ﬁ?,gus ! is a morphism of graded Lie algebras.

Moreover free generators of the Lie algebra grw Lield (O sus,uqiji}«;1) in
degree k greater than 1 are mapped bijectively onto free generators in degree k of
the Lie algebra gry Lield (O suqii} ;1) by the morphism ngLieW?ngflﬁg“}K
by (1.1.c.). Hence the same is true for the morphism

(gerieﬂ'IIg:gUSl)l :gTWLie(OK,Susl)l — ngLie(OKS)l.
This implies that the induced morphism ﬁfjgusl is an isomorphism of graded
Lie algebras. g

Definition 1.7. Let L = @;°, L; be a graded Lie algebra over a field k such
that dimL; < oo for every i. We set

L® = é Hom(L;, k)
i=1
and we call L® a dual of L.
The Lie bracket [, ] of the Lie algebra L induces a morphism
d:=[,]":L° = L°®L°,

whose image is contained in the subspace of L® ® L°® generated by antisymmet-
rical tensors of the form a ® b — b ® a.
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Definition 1.8. The Q;-vector space (grw Lield(Ok s);)° we shall call a vector
space of coefficients on gry Lield(Ok,s);-

Remark 1.8.1. We consider the Q;-vector space (grw Lield(Ok s);)° as an
analog of generators of the QQ-algebra of periods of mixed Tate motives over
SpecOk s. Anticipating, if the vector space (grw Lield(Ok,s)1)° is generated by
geometric coefficients then it has a natural Q-structure, which is much better
analog.

The morphism
d=1,]": (grwLield(Ok,s)1)° — (grw Lield(Ok s)1)° @ (grw Lield(Ok s)1)°
we denote by do, ;. We set
L(Ok s;1) = ker(doy s)-

It follows from from the construction of the graded Lie algebra gry Lield (Ok s);
and from isomorphisms (1.1.a.), (1.1.b.) and (1.l.c.) that there are natural
isomorphisms

L(Ok,s;1); = ker(dog s )i = Hl(GK;Ql(z')) for 1 >1

and

L(Ok s;1)1 = ker(doy s )1 = (grw Lield (O 5)1); = Ok 5 @ Q.

The surjective morphism

(gerieﬂ?gUSl)l : grw Lie(Ok sus, )i = grw Lie(Ok s )i
induces a monomorphism of dual vector spaces
K,S —
HK,SU»S'l T
((gTWLieﬂﬁjgusl)l)o : (grw Lield (Ok s)1)° — (grw Lield (Ok sus, )i)°-

Corollary 1.9. We have

(grw Liel (Or,s)1)° = {f € (grw Lield(Ok,sus, )1)° | f(I(Ok,sus, : Ok,s)) = 0}
Proof. The corollary follows directly from Proposition 1.6. U

Definition 1.10. Let S and S; be finite disjoint sets of finite places of K. We
say that
f € (grwLiel (Or,sus,)1)°

is unramified outside S1 if f(I(Ok sus, : Ok,s)) = 0.
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Now we shall study relations between weighted Tate completions of a Galois
group of a field and a Galois group of its finite Galois extention.

Let K be a number field. Let S be a finite set of finite places of K. Let L be
a finite Galois extension of K and let T" be a set of finite places of L lying over
finite places of K belonging to S. The inclusion of rings of algebraic integers

Ok, sufiye = Orroqiiy,
induces morphisms of weighted Tate completions

L, Tu{Il
WK,SLLJJHli 1 G(Or,ruqyil) = GOk suqn g3 1)

and
L,Tu{I|l
WK,SB;{{[luﬁ( :UOLroqy 3l = UOK suquiy g D)-
After passing to associated graded Lie algebras with respect to weight filtrations
we get morphisms of graded Lie algebras

1.10.1.
gerieﬁfL(’EB?{Hll]}f{ s grw Lied (O roqy 1) = grw Liel (Ok suqiy i 1)-

Proposition 1.11. Let K be a number field and let L be a finite Galois
extension of K. Let S be a set of finite places of K and let T be a set of finite
places of L lying over elements of S. The inclusion of rings of algebraic integers
Ok, sufiiyx = Or,ruqy, induces a morphism of graded Lie algebras

(ngLiewlL(’g)l :ngLieZ/l(OL,T)l — gTwLZ'GU(OKys)l.

Proof. Let u € O g. Then u € Of . Hence the Kummer character (u)
considered on gry Lield (O, ruqiy, ;1)1 vanishes on a subspace (I | 1), r of
grw Lield (O, ruquiy 3 1)1- But this implies that the morphism 1.10.1 maps the
Lie ideal (I | I) 7 into the Lie ideal (I | [)k s. Passing to quotient Lie algebras
we get a morphism

(gTwLieﬂ'Ilé”g)l : gTwLZ’GU(OL’T)l — gTwLiCU(OK’S)l.

0

Proposition 1.12. Let L be a finite Galois extension of K. Let S be a set of
finite places of K and let T be a set of finite places of L lying over elements of
S. Then the morphisms

QTWLZ'EW;L(’EB?%; s grw Lied (O roqy i) = grw Liek (O suqiy 1)

and
(ngLieﬂIL{’z;)l : grw Lield(Op 1)1 — grw Lield(Ok . s)

are surjective.
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Proof. It follows from (1.1.b) and (1.1.c) that the morphism 1.10.1 induces the
following commutative diagram
Hom((grw Lield (Ox suqii} g ; l)/F2..)i;Ql) — Hom((gerieL{(OL’TU{W}L;l)/FQ..)i;Ql)

H'(SpecOx suqiny g3 Qu(4)) — H' (SpecOr ruqy ;s Qu(i))

for each ¢ > 0. The map of cohomology groups induced by the inclusion

Ok suqiye = Or,ruqiy, is injective. Hence the morphism
grw Lield (O roqy, i 1) /T2 — grw Lield (O suquiy 31D/

is surjective. This implies that the morphism

gerieﬂé’gﬂw}}f{ cgrw Lield(Op roqiy ;1) — grw Lied (O suqiiy« 5 1)

is surjective. Hence the morphism (ngLieﬂIL(’,g)l is also surjective. O
Definition 1.13. Let us set

I(Opr:Okg) = ker((gTWLieﬂ'IL(’g)l : grw Lield(Op, 1)1 — grw Lield(Ok s)1).

Let us set G = Gal(L/K). From now on we shall assume that
i) ! does not divide the order of Gj
i) K(e)NL=K.
Then it follows from [11], Lemma 4.2.2 and the functoriality of the weighted

Tate completion that the group G acts on U(Op ruqiy, ;1) preserving weight
filtration.

Lemma 1.14. The action of G on grw Lield (O, ruqyiy, ;1) induces an action
of G on the graded Lie algebra gry Lield(Or 7).

Proof. We recall first how G acts on gry Lield(Op ruqqiy,;1). Let M be
a maximal pro-l unramified outside T'U {[ | {}1 extension of L(fye). Then
G C Gal(M/K(ue)). Hence G acts on Gal(M/L(u=)) by conjugation (see
[4], section 1 or [11], Lemma 4.2.2.). Then by functoriality G acts also on
U(Or ruquiy ;1) preserving weight filtration. Therefore G acts also on
grw Lield (O, rugiiy,, ;1) by Lie algebra automorphisms.

For any a € OF r, any 0 € Gal(M/L(j~)) and any g € G we have

k(g™ (@)(0) = K(a)(g-o-g7).

This implies that for any s € grw Lield (Or, pugiy, ;1)1 we have

k(g™ (a))(s) = K(a)(g(s))-
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Hence the subspace (I | I)r, 7 of grw Lield(Or ruqyiy, ;1)1 is G-invariant, i.e.
G((t| ) p,r) € (I 1)L, 7. Therefore G acts also on the quotient Lie algebra. [

Proposition 1.15. Let L be a finite Galois extension of K. Let S be a finite set
of finite places of K and let T be a set of finite places of L lying over elements
of S. We also assume that

i) ! does not divide the order of Gj
i) K(e)NL=K.
Then we have:

i) the Lie ideal I(Or 1 : Ok g) is generated by elements gv —v, where g € G
and v € grw Lield(Op 1);

ii) The morphism (ngLieWIL(’g)l induces an isomorphism

gTWLieu(OL,T)l/I(OL,T : O[gg) — ngLieL{((’)Ks)l.
Proof. The group G acts on U(Op, ruqiy, ;1) by automorphisms preserving the
weight filtration. Lemma 1.14 implies that it acts by automorphisms on the Lie
algebra gry Lield (O 7). Then T?gry Lield(Op, ), is a G-invariant subspace
of grw Lield (Or,1);. Let us choose in each degree i a G-invariant complement V;
to (I?grw Lield(Op, );)i- Then the Lie algebra gry Lield (O, 1); is generated
by a vector space ®2,V;.

Let V; be the image of V; in gry Lield(Ok s); by the map (gTwLieﬂ'f(”g)l.
We have isomorphisms compatible with the action of the group G

Vi" = (grw Lied(Op r)1)1 = O r @ Qq for i=1
and
V' = (g?“WLieL{((’)L,T)l/FQg?“WLieLI((’)L)T)l);.k = Hl(Spec(’)L)T;Q(i))
for ¢ > 1. Hence it follows that in degree 1 there are isomorphisms

(M) =~ (V)Y =~ ((QTWU@U(OL,T)I)T)G (O; r@ Q)¢

| g

(g?‘WLZ'€Z/{(C')K,5)1)1k ~ O;(,S @ Q.

Q
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For 7 > 1 we have a commutative diagram

Hom((grw Lield(Ok,s)1/T2..)i; Q) — Hom((grw Lield(Op 1)1/T2..);; Q)

(kerdoy ¢)i — (kerdo, )i
H'(SpecOk suquiy; Qi) — H'(SpecOyr roquiy, ;s QD).

The isomorphism
H' (SpecOk suqiy e Q) = H' (SpecOL roqy . Q1)

which follows from the Lyndon spectral sequence and the isomorphism
H'(SpecOp rupyy,; Q@) = (V) = (Vi)g)*

imply that ,

where R; is a subspace of V; generated by elements gv —v for g € G and v € V.

Observe that gry Lield(Ok,s); is generated freely by a base of &32,V}.
Therefore the Lie ideal generated by &2, R; is contained in I(Or r : Ok s). But
the quotient of gry Lield (O ); by the ideal generated by @2, R; is isomorphic
to grw Lield(Ok g);- Hence we get i) and therefore also ii). O

Corollary 1.16. We have

(grw Liel (O ,s)1)° = {f € (grw Lield(Or,1)))° | f(I(Or,r : Ok,s)) = 0}.
Definition 1.17. We say that f € (grw Lield(Op 1);)° is defined over K or
that f is [Gal(L/K)|-invariant if f(I(Opr: Ok.s)) = 0.

We finish this section with the study of the dual of the Lie bracket of the
Lie algebra gryw Lield(Ok . s);i.
The Lie bracket of the Lie algebra gry Lield (Ok, s); induces
doy s : (grwLield (O, s)1)° — (grw Lield (Ok s)1)° @ (grw Lield (Ox,5)1)°-
We recall that we have defined

E(O[gs; l) = ker dOK,s'
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The vector space L£(Ok,s;!) inherits grading from (grw Lield(Ok,s);)° and we
have

L(Ok s;1) = @E(OK,s; D).
i=1
Observe that
L(Ok s;1) = {f € (grwLield(Ok,s)1)° | [(T*grw Lield(Ok s)1) = 0}
= ((grw Lield(Ok )1)™)°.
To simplify the notation we denote do,, ; by d and we set
gu = (grw Lield(Ok s)1)°.

We define operators
n+1

d™ : (gu)® — R)(gu)°
i=1
by setting

d™ = (d® (@7 Id(guye) © .. 0 (d @ Id(guyo @ Id(gyye) © (d @ Id(gyye) o d.

gu)®
Let pr,11 : @74 gu — gu be given by

Prot1(U1 @ua @ ... @ upyr1) = [[. . [[u1, uz], usl, .. .], unt1]

Lemma 1.18. We have
D) (prog1)® = d™;

ii) f € (grwLield(Ok s);)° vanishes on T (gry Lield (O s);) if and only
if d"™(f) = 0;

iii) Let f € (grwLietd(Ok.s)1)S,. Assume that d*+1(f) = 0. Then d¥)(f) €
@11 L(Oxsil).

Proof. The point i) is clear and ii) follows from i).
It rests to show the point iii). The map d®) (f) = f o prry1 is equal to the
composition

@l gu — @ (gu)® — T gu/TF 2 gy gu/FnguLQl.

The equality £(Ok ;1) = ((gu)®)° implies that d®)(f) € @ L(Ok s;1). O
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2 Geometric coeflicients

Let aj,...,a, € K and let V := P} \ {ai,...,an,00}. Let v and z be K-
points of V' or tangential points defined over K. Let S be a finite set of finite
places of K. Let [ be a fixed rational prime.

We denote by 71 (Vg ; v) the pro-l completion of the étale fundamental group
of Vi based at v and by 7(Vi; z,v) the m (Vgz; v)-torseur of pro-l paths from v
to z.

The Galois group Gk acts on 7 (V;v) and on m(Vg;z,v). After the stan-
dard embedding of 71 (Vg;v) into a Q-algebra Q{{X1,...,X,}} of formal
power series in non-commuting variables we get two Galois representations

Yo = v Gg — Aut(Q{{ X1, ..., Xn}})

and
wz,'u = wV;z,v : GK — GL(Q[{{Xh e 7Xn}})

deduced from actions of Gk on 7; and on the 7;-torseur (see [7], section 4).

Let us assume that a pair (V,v) and a triple (V, z,v) are unramified out-
side S. Then the representations ¢y, and v ., factor through the weighted
Tate Q;-completion G(Og sufiiye;l) of mh(Spec Ok suquiys; SpecK) because
the representations ¢y, and ¥y, are l-adic weighted Tate representations
(see [11] Proposition 1.0.3 ). It follows from Proposition 1.2 iii) that passing
to associated graded Lie algebras with respect to the weight filtrations we get
morphisms of graded Lie algebras

grw Liep, : grw Lield (O, s)i — (@ Lie(Xq,..., X)) /{(Xi);{})

i=1

and

grwLiep, ,:grw Lield (O s )i — Lie(Xq,..., X)X (é Lie(X1, ..., X)) /(X)) {})
i=1

Passing to dual vector spaces we get morphisms
DY := (grw Liep,)® : (é Lie(X1,...,Xn)/(X:);{})° = (grwLield (Ok s)1)°
i=1
and
U = (grw Liey. ,)° : (Lie(X1, ... ,Xn)i(é Lie(X1,..., X)) /(X:): {})°
i=1

— (grw Lield(Ok s)1)°.

Definition 2.1. We set

Geom C’oeff(ngYS (V,v) := I'mage (®)
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and
Geom C’oeff(ng’S (V, z,v) := I'mage (*").
The vector subspace Geom Cocef fi,. (V,v) (resp. Geom Coef fo, (V. z,0))

of (grw Lield(Ok. s)i)® we shall call a vector space of geometric coefficients on
grw Lield(Ok g); coming from (V,v) (resp. (V,z,v)).

Let us fix a Hall base B of a free Lie algebra Lie(X7,...,X,). If e € B then
e* denotes a dual linear form in Lie(Xq,...,X,,)°. Let

prio - @ Lie(Xy,..., Xn)/(X;) — Lie(X1,..., Xn)/(Xi,)

i=1

be the projection on the ig-th component. Let
p: Lie(Xy, ..., X,)%(EP Lie(X1, ..., X,)/(Xi)) — Lie(Xy,...,X,)
i=1

be the projection on the first factor.

We set

2.2. {z,v}e» :==€" opogrwLiey,, =T (e* op).

Let e € B be different from X;. Let a; be any tangential point defined over
K at a;. Then we have

2.3. {a;,v}er = ®Y(e* 0 pr;) = €* o pry o grw Liep,,.

The geometric coefficients {z, v}« considered here are the l-adic iterated in-
tegrals from [7]. We use here the notation {z,v}.« because it is more convenient
for our study.

If ¢ € (Lie(X1,...,Xn)X (D), Lie(X1,...,X,)/(X;))® then U=Y(y) =
Y o gry Liey, , is a linear combination of symbols 2.2 and 2.3.

Let us assume that a triple (W, ¢, €) is unramified outside S U S;. We would
like to have some working criterium when elements of Geom Coeff(lDK‘SUS1 (W,¢,€)

are unramified outside .

Let us assume that a triple (U, s,t) is defined over L. Similarly we would
like to know when f € Geom C’oeff(lgL’T(U,s,t) is defined over K, i.e, when
f is [Gal(L/K)]-invariant. We shall study some explicit examples in the next

sections.
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3 From P!\ {0,1, 1,00} to periods of mixed Tate
motives over SpecZ

Let V :=Pg \ {0,1,-1,00}. In [9], 15.5 we have studied the Galois repre-
sentation

3.0. e Go — Aut(m(Vy; O_i))

=
Observe that the pair (V;01) has good reduction outside the prime ideal (2) of
Z (see [11], Definition 2.0). Hence the representation 3.0 is unramified outside
prime ideals (2) and (I) (see [10], Corollary 17.17). After the standard embed-

7
ding of 71 (Vg;01) into the @-algebra of formal power series in non-commuting
variables Q{{X,Y0,Y1}} (see [9], 15.2) we get a representation

3.1. ps1 : Go = Aut(Qi{{X, Yo, Y1}}).

It follows from the universal properties of weighted Tate completion that the
morphism 3.1 factors through

P G0 = Aut(@i{X, Yo, i)}

Passing to associated graded Lie algebras we get a morphism of graded Lie
algebras studied in [9], 15.5,

) ) 1 .
3.2. ngLzego(ﬁ : ngLzeL{(Z[Z—l];l) — (Lie(X, Yo, Y1), { }).

It follows from Proposition 1.2 iii) that the morphism 3.2 induces a morphism
of graded Lie algebras

3.3. (ngLiego(ﬁ)l : ngLiel/l(Z[%])l — (Lie(X, Yo, Y1), {})-

Proposition 3.4. The morphism of graded Lie algebras

(ngLiega(T) grw Lield (Z [1])l — (Lie(X,Y0,Y1),{})

-
deduced from the action of Gg on m (Pé \ {0,1,—1,00};01) is injective.

Proof. The proposition follows from [9], Theorem 15.5.3. Below we give a more
detailed proof.
5
We recall that {G;(V,01)}.en is a filtration of Gg associated with the rep-

5
resentation 3.0 (see [7], section 3). The pair (V,01) has good reduction outside
the prime ideal (2) of Z. Hence the natural morphism of graded Lie algebras

3.4.1. grw Lield (7 ) — @ (V,01)/Giir (V,01)) © Q
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is surjective (see [10], Proposition 19.1,ii) ). Moreover the natural morphism

oo

342 @GiV,01)/Gia (V,01)) © Q — (Lie(X, Yo, Y1), { })

i=1

is injective (see [10], Proposition 19.2,i) ). The morphism 3.2 is the composition
of morphisms 3.4.1 and 3.4.2. It follows from Proposition 1.2 iii) that the mor-
phism 3.2 induces a morphism 3.3. Hence the morphism 3.3 induces a surjective
morphism of graded Lie algebras

o0

3.4.3. ngLieU(Z[%])z — @(Gi(V,O_i)/GZ-H(V,O_i)) ®Q

i=1

Both graded Lie algebras are free, freely generated by elements dual to x(2) and
lon+1(—1) for n > 0. Hence the morphism 3.4.3 is an isomorphism. This implies
that the morphism

(ngLiegp(ﬁ)l : ngLieU(Z[%])l — (Lie(X, Y0, Y1),{})

is injective. O
The immediate consequence of Proposition 3.4 is the following corollary.

Corollary 3.5. All coefficients on gry Lield (Z[3]), are geometrical, more pre-
cisely

1 —
(gerier{(Z[i])l)<> = GeomCoeffé[%](I% \ {0,1,—1,00},01).
We recall that the morphism of graded Lie algebras

1
g?“WLieL{(Z[§])l — grw Lield(Z),
induced by the inclusion of rings Z < Z[3] is surjective and its kernel is by the
definition the Lie ideal I(Z[4] : Z) (see Proposition 1.6). Hence Corollary 3.5
implies the following result.

Corollary 3.6. The vector space of coefficients on gry Lield(Z); is equal to
—
the vector subspace of GeomC’oeffé[l](]P’%2 \ 0,1,—1,00},01) consisting of all
2
coefficients unramified everywhere.

Remark 3.6.1. The corresponding statement in Hodge-De Rham realization
says that all periods of mixed Tate motives over SpecZ are unramified every-
where Q-linear combinations of iterated integrals on P*(C) \ {0,1, —1, 00} from

.4 T dz _dz dz
01 to 10 in one forms 7%, % and 7.

Now we shall look more carefully at geometric coefficients to see which are
unramified everywhere.
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The Lie algebra gry Lield (Z[%Dl is free, freely generated by one generator
z; in each odd degree. The Lie ideal I(Z[1] : Z) is generated by the generator in
degree 1. This generator z; can be chosen to be dual to the Kummer character
k(2), i.e. k(2)(z1) = 1.

Let us choose a Hall base B of a free Lie algebra Lie(X, Yy, Y1). Then the
geometric coefficients, elements of the Q;-vector space GeomCoef fé[l](]%l) \
2

— - = - = 3
{0,1,—1,00},01) are of the form {10,01}.- and {10,01}, where o) =" | n;e;
and e, e; € B.

Proposition 3.7. Let e € B be a Lie bracket in X and Yy only. Then the
— -
coefficients {10,01}.+ is unramified everywhere.
Proof. Let j : P\ {0,1,—1,00} < P!\ {0,1,00} be the inclusion. Then j
—

induces a morphism of fundamental groups based at 01. After the standard
embeddings of fundamental groups into non commutative formal power series
we get a morphism of Q;-algebras

gt Q{{X, Yo, Y1} — Qu{{X,Y}}
such that 7,(X) = (X), 7.(Yo) =Y, j.(Y1) = 0.
— — —- = LT L
Then we have {10, 01} x,y,)+ = {10,01}¢(x,y)+0j. = {4(10),5(01) }e(x,v)- =
— = —
{10,01}¢(x,v) (see[8] (10.0.6)). The pair (P*\{0,1, 00}, 01) is unramified every-
where, hence the coefficient {]._67&.}6()(7)/0)* belonging to GeomCoeffé[l](IP’1 \
2

—
{0,1,—1,00},01) is unramified everywhere. O

There are however coefficients in the QQ;-vector space GeomC’oeffé[l](IP’1 \
2

—
{0,1,—1,00},01) which contain Y; and which also are unramified everywhere.
These coeflicients are of course the most interesting in view of Corollary 3.6 as
we perhaps still do not know if the inclusion

GeomCoef fL(P'\ {0,1, 00}, O_i) C (grw Lield(Z),)°

is an equality. For example we have the following result.

Proposition 3.8. We have

1— 277,71

— = - =
{10’01}[Y1,X("_1)]* - %7_1 : {10,01}[Y07X<n—1)]*.

Proof. It follows immediately from the definition of coefficients {1_(3, O_i}e and
the definition of l-adic polylogarithms (see [8], Definition 11.0.1) that

- —
{10,01}[Y0’X(n—1)]* = ln(l)
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- =

It follows from [9], Lemma 15.3.1 that {10,01}py, xm-1p = ln(=1). The
proposition now follows from the distribution relation 2"~*(l,(—1) + 1,,(1)) =
1,(1) (see [8] Corollary 11.2.3). O

Below we shall give an inductive procedure to decide which coefficients are
unramified everywhere. Let us denote for simplicity

1 oo
L; = E(Z[E];Z)i and Lo := @ﬁi.

i=2
Lemma 3.9. We have

i) L£; = Q for i odd and £; = 0 for 7 even;
i) Ly is generated by the Kummer character x(2);

iii) Logt1 is generated by logy1(—1) for k& > 0.

Proof. The point i) follows from the isomorphisms £1 ~ Z[1]* ® Q; in degree
1 and £; ~ H'(Gg;Qi(4)) for i > 1. Hence L; is generated by the Kummer
character x(2). The cohomology group H'(Gg;Q;(2k + 1)) is generated by a
Soulé class, which is a rational multiple of la;41(—1). O

If e € B then degy, e denotes degree of e with respect to Y;. We define

degye := degy, e + degy,e.

—
Lemma 3.10. Let ¢ € GeomCoeffé[l](IP>1 \ {0,1, 1,00}, 01) be homogenous
2

of degree k.
i) If k =1 then dp = 0 and ¢ is a Q;-multiple of x(2). Hence if ¢ # 0 then
 ramifies at (2);
ii) If £k > 1 and dy = 0 the ¢ is unramified everywhere;
iii) f k > 1and ¢ = > ., ael, where e; € B and degy e} = 1 for each i then
dep = 0 and ¢ is unramified everywhere.

- =
Proof. In degree 1 there are the following geometric coefficients {10,01}x = 0,

- — - —
{10,01}y, = 0 and {10,01}y, = k(2) — the Kummer character of 2, which
ramifies at (2).

If degp = k > 1 and dp = 0 then ¢ is a Q;-multiple of [;(—1) by Lemma
3.9 iii). Hence ¢ is unramified everywhere by Propositions 3.8 and 3.7.

If degy-e = 1 then e = [Yy, X*~V] or e = [V, X*~D]. In both cases it is
clear that d(e*) = 0. O

N
Lemma 3.11. Let ¢ € GeomC’oeffé[l](IP’1 \ {0,1, 1,00}, 01) be homogenous
2

of degree k > 1.
i) If d?p = 0 then dp € L ® L;
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ii) If d® ¢ = 0 then ¢ is unramified everywhere if and only if dp € Lo ®@Lx1;

- -
iit) If o = 37", n4{10,01}cx, where ¢; € B and degye; < 2 for each i then
d®(p) = 0.

Proof. We can write dp = >, ; a; ® 3;, where a; and f3; belong to

(grw Lield(Z[%]),)° for i € I and B; are linearly independent. Hence d®(p) =
> icr d(a;)®pB; = 0implies that d(c;) = 0 for i € I. Hence it follows that o; € L.
Therefore we can write dy = Zzozl Qp @ Y, Where a,, € L, because dim,,, <1
by Lemma 3.9. Tt follows from the equality d®¢ = 0 that (Id ® d)(dp) = 0.
Hence ¢,, € L for each n. This implies that dy € L ® L.

We recall that the Lie algebra gry Lield(Z[3]); is free, freely generated by
elements zj of degree k for k odd.

If ¢ is unramified then clearly dp € L1 ® L51. Let us suppose that degyp =
k>landdyp € L51®L~1. Then ¢(z1) = 0 because degy > 1 and ¢([z1, 2;]) =0
because dp € L1 ® L.

The condition d?¢ = 0 implies that ¢ vanishes on I'®gry Lield(Z([1]):.
Hence ¢ vanishes on the Lie ideal I(Z[1] : Z). Therefore ¢ is unramified every-
where.

- — - —
If e € B and degye = 2 then d({10,01}.-) € L® L, hence d® ({10,01}-)

o

0.

4 Py, \ ({0,00} Ups) and periods of mixed Tate
motives over SpecZ|[;| and SpecZ|u;]

Let U = IP)}@(#S) \ ({0,00} U ps). In [9] we have also studied the Galois
representation

—
ool Go(us) — Aut(m(Pé \ ({0, 00} U p3); 01)).

The pair (U, (ﬁ) has good reduction outside the prime ideal (1 — &3) of Og(y)s

where &3 is a primitive 3rd root of 1. Observe that we have an equality of ideals
(1 —£&3)% = (3). Hence we get a morphism of graded Lie algebras

. . 1 .
4.0. ngLzegaUﬁ s grw Lield (Z[us][=];1) — (Lie(X, Yo, Y1,Y2),{ }).

370
It follows from Proposition 1.2, iii) that the morphism 4.0 induces a morphism

) . 1 )
4.1. (ngLzewU(ﬁ)l : ngLzeZ/{(Z[ug][g])l — (Lie(X,Y0,Y1,Y2),{ }).

Proposition 4.2. The morphism of graded Lie algebras

(grw Liegy, 51 - grw Lieth (Zlps] [0 — (Lie(X, Yo, Y2, Ya), { ).



I-24

—
deduced from the action of Gg,,) on 71 (Ug;01) is injective.
Proof. The proposition follows from [9], Theorem 15.4.7. O

Corollary 4.3. All coefficients on gry Lield (Z[us][3]); are geometrical. More
precisely we have

(griw LU (2] 510)° = GeomCocf £y, 111 (Bl \ ({0, 00} U pss), 01,

Proof. The result follows immediately from Proposition 4.2. O

Corollary 4.4. We have:
i) The vector space (grw Lield(Z[us]);)® is equal to the vector subspace of

these elements of GeomCoeffé[ug][%](]P’l \ ({0,000} U u3)70_i), which are
unramified everywhere;

ii) The vector space (grw Lield(Z[1]);)° is equal to the vector subspace of
GeomC’oeffé[m][é] (P \ ({0,000} U ps), O_i) consisting of coefficients which
are defined over Q;

iii) The vector space (grw Lield(Z);)° is equal to the vector subspace of these
elements of Geom(]oeffé[m][é](IP’1 \ ({0, 00} U p13), O_i), which are defined
over Q and unramified everywhere.

Proof. The corollary follows from Corollary 4.3 and from Proposition 1.12 and
Proposition 1.6. O

5 I%(ff‘l) \ ({0, oo}.U,u4) and ]P’(l@(%') \ ({0, 00} U pug) and
periods of mixed Tate motives over SpecZli],
SpecZus|, SpecZ[v/2][3], SpecZ[v/—2|[%], SpecZ[V2]
and SpecZ[v/—2]

— —
The pair (Pb(M) \ ({0,00} U p14),01) (resp. (]P)(%D(Ms) \ ({0,00} U ug),01)) has
27mi

good reduction outside the prime ideal (1 —1i) of Z[u4] (resp. (1—es") of Z[usg])
lying over (2). Hence it follows from Proposition 1.2 iii) and from [9], Corollary
15.6.4 and Proposition 15.6.5 that morphisms of graded Lie algebras

. ) 1 .
(grw Liewg v+ grw Liel (Z{pa] (5] — (Lie(X, Yo, Y1, Y2, ¥3),{ })
and

(ngLiegaO—i)l : ngLieU(Z[us][%})l — (Lie(X, Yo, Y1,...,Y3),{ })
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—
deduced from the action of G(%(M) (resp. Go(uy)) on m1(Pg \ ({0, 00} U p14);01)
(resp. m (]P’(l@ \ ({0,00} U ug); 01)) are injective. Hence we get

Proposition 5.1. All coefficients on gry Lield (Z[j4][3]); and on
grw Liel (Z[us)[1]); are geometrical, more precisely

. 1o -
(grw Lield (Z[p4] [5])1) = Geomcoeffé[,“][%] (]P)(l@(M) \ ({0, 00} U pug), 01)
and

(ngLieU(Z[ug][%])l)o = GeomC’oeffé[Ms][%](]P’bws) \ ({0,00} U us),O—i).

Corollary 5.2.
i) The vector space (grw Lield(Z[pa]);)® is equal to the vector subspace of
—
GeomCoeffl 1 (PL \({0,00}Upy),01) consisting of the coefficients
Zlpal[5]N Q(ua)
which are unramified everywhere;
ii) The vector space (grw Lield(Z[us]);)® is equal to the vector subspace of
—
GeomCoeffl 1 (PL  \({0,00} Upsg),01) consisting of the coefficients
Zlps)[3]" Qlus)
which are unramified everywhere;
iii) The vector space (grw Lield(Z[v/2][3]);)° is equal to the vector subspace
—
of GeomC’oeff%[HS”%](IP’é(us) \ ({0, 00} U ug),01) consisting of coefficients
which are defined over Q(1/2);
iv) The vector space (grw Lield(Z[/2]);)° is equal to the vector subspace
—
of GeomCoeffL . (PL \ ({0, 00} U ug),01) consisting of coefficients
Zips][5]N Q(us)
which are unramified everywhere and defined over Q(v/2);
v) The vector space (grw Lield (Z[v/—2][3])1)° is equal to the vector subspace
of GeomCoeff . (PL \ ({0, 00} U us), (Tl) consisting of coefficients
Zlps)[3] Qlus)
which are defined over Q(v/—2);
vi) The vector space (grw Lield(Z[\/—2]);)° is equal to the vector subspace
—
of GeomCoeffé[us][%](Pé(ﬂs) \ ({0, 00} U ug),01) consisting of coefficients
which are unramified everywhere and defined over Q(v/—2).

6 Periods of mixed Tate motives, Hodge—De Rham
side

We shall give here a sketch of a proof of the result annouced at the beginning
of the paper.
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Theorem 6.1. The Q-algebra of periods of mixed Tate motives over SpecZ is
generated by linear combinations with rational coefficients of iterated integrals

1 dz _dz dz .4
on P*(C) \ {0,1,—1, 00} of sequences of one forms <=, -5 and 7 from 01 to

—
10, which are unramified everywhere.

Sketch of a proof. We shall assume formalism from [1]. In the group
of complex points of the affine group Upgr(Z[3]) there is an element Vi) €

Upr(Z[4])(C) which gives all rational lattices in the Hodge - De Rham realiza-

tion of mixed Tate motives over SpecZ[3]. The action of Upg(Z[3]) on the mixed
Tate motive associated to m (P*(C)\ {0,1, —1, 00}; (Tl) is free. This is an analog
of Proposision 3.4. (See talk of P. Deligne in Schloss Ringberg (|2]) and also [12],

where cases of 71 (P1(C) \ ({0,00} U u3); O_i) and m (P*(C) \ ({0,00} U u4);0_i)
were considered.) Hence the coordinates of Yz[3)are given by iterated integrals

— —
on P\ {0,1,—1,00} of sequences of one forms dz—z, szZ1 and Z”_lfl from 01 to 10.

The natural embedding of the category of mixed Tate motives over SpecZ
into the category of mixed Tate motives over SpecZ[%] induces a surjective

morphisme

UDR(Z[%]) — Upr(Z).

Let 4 be the image of 751 in Upr(Z)(C). Then #¥ is an element which gives
all rational lattices in the Hodge - De Rham realization of mixed Tate motives

over SpecZ. Passing to Lie algebras we get a morphism of Lie algebras
1
Lz’eUDR(Z[i]) — LieUpr(Z),

which maps log’yz[%] into logy. Let ¢ be a linear form on LieUpr(Z). Then ¢
evaluated on 7 gives a period of a mixed Tate motive over SpecZ. The linear
form ¢ view as a linear form on LieUpr(Z[3]) vanishes on the ideal I(Z[3] : Z).
Hence (%) is unramified everywhere and ¢(%) is a sum of iterated integrals on

— —
P\ {0,1, —1,00} of sequences of one forms %, 4= and z‘fl from 01 to 10. O

z 7 z—1

7 An example of a missing coefficient

Let p be a prime number. In [11] we have study the problem of expressing
coefficients of (gry Lield (Z[%])l)<> by geometrical coefficients. Using the action
of Gg(u,) on the torsor of paths W(P}@ \{0,1, 00}; &, (Tl) we have constructed all
coefficients on gTWLieZ/{(Z[%])l. After publishing the paper [11] we realize that
it is far from obvous that the coefficients we constructed are geometrical and
moreover to show that they are geometrical we should rather look at the action

e
of G,y on m1 (P \ ({0, 00} U 11); 01).
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—

We hope studing the action of Gig(,,) on 771(]}”%—2 \ ({0, 00} U 1p,); 01) to show
that results of [11] concerning SpecZ[%] are true. More precisely we hope to
show that the kernel of the morphism

grw Lield (Zuy) [}3]» — (Lie(X, Yo, Y1) { 1

—
deduced from the action of Gg(,,) on (Pé \ ({0,000} U p,,);01) is contained
in the Lie ideal I(Z[up}[%} : Z[%D Then it implies that all coefficients of
(grw Lield (Z[up][%])l)<> are geometrical. In the special cases considered in the

present paper it is true because the kernel for p = 2, p = 3 and also for p = 4
and p = 8 is zero.
We finish our paper with an example showing that one can deal with a single
coefficient. We shall use notations and results from our papers [9] and [10].
. . 1 -
Let p be an odd prime. The pair (Pg, )\ ({0,00} U p,),01) has good

N
reduction outside (p). Hence the action of Gg,,) on m (Pé \ ({0,000} U pp); 01)
leads to a Lie algebra homomorphism

. . 1 « .
grw Lieg, : grw Lield (Z[ ) [];])l — Dery,,(Lie(X, Yo, ..., Yp—1)).

The following result generalize our partial results for p = 5 (see [10], Proposition
20.5) and for p = 7 (see [3], Theorem 4.1).

Proposition 7.1. Let p be an odd prime.
i) In the image of the morphism of graded Lie algebras

. . 1 « .
grw Liep, : ngLzeZ/{(Z[,up][;])l — Dery,(Lie(X, Yo, ..., Yp-1)).

there are linearly independent over QQ; derivations 7; for 1 < i < =1 quch

2
that
7,(Yo) = [Y0,Y: + Y]

ii) There are the following relations between commutators

p—1
2

—1

Ry : [Tk;ZTi]:O for lgkng

i=1

and between relations
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Proof. The equality £/(1-£27%) = —(1—-¢)) implies that (1= =1((1-¢)
on gryw Lield (Z[pp ][ ])i. Elements 1—¢} for 1 <14 < B~ L are linearly independent

in the Z-module Z[up} The point i) of the proposmon follows from [9], Lemma
15.3.2.

To show ii) we calculate [Tk,zlp;ll 7| = {Ye +Y,_ k»ZE Yi+Y,i)} =
W+ Yo g Vi = [, 300 Vil + 2is o [Yi Yirn] = 200 [Ye, Yia] +
Yy k72 il + Zp o IYs, Yigp- k] 20 Yoks Yiip—i] = 0.

The relatlon [Zk 1 Tk 27 1 7] = 0 holds in any Lie algebra, hence we have

a relation Zk 1 Ri. = 0 between the relations. g
In the Lie algebra gry Lield (Z[ 1) [%]) 1 we have 21 linearly independent gen-
erators T1,... ,T%—l in degree 1, which generate a free Lie subalgebra. Hence

the obvious question is how to construct geometric coefficients in degree 2 (pe-
riods of mixed Tate motives over SpecZ[up][%]) which are dual to Lie brackets

[T;,T;] for (i < j). It is clear from Proposition 7.1 that there is not enough
—
coefficients in GeomC’oeffZ e ]( By \ ({0,001 U fp),01).

We consider only the simplest case p = 5. We start with the action of
—
Go(uo) = GQ(ﬂs)_)on ™1 (P4 \ ({0,000} Upino), 01). Observe that the pair (Pg,,, \\
({0,000} U 1110),01) has good reduction outside divisors of (10). We have the
following result.
Proposition 7.2. We have:
i) In degree 1 the image of the morphism

T (Lie(X, Yo, o Yol ()

is generated by o1 :=Y1 + Yo+ Yo +Ys — Y5 - Y7, 09 =Y - Yo+ Yy +
}/6+Y3+Y7 andn::Y5.

ii) The Lie bracket {o1, 02} is different from zero and the coefficient of {o7, 02}
at [Y7,Ys] is 1.

iii) Let f := [Y7,Ys]* be a linear form on Lie(X,Yy,...,Yy) dual to [¥7,Ys]
with respect to standard Hall base of Lie(X,Yp,...,Ys). Let

ngLz'eapa s grw Lield (Z[us]|

F:=fo ngLiego(ﬁ.

Then F vanishes on the Lie ideal I(Z[us][15] : Z[us][£]). Hence F defines
a non trivial linear form of degree 2 on gry Lield(Zus][£]); non vanishing

on I'2gry Lield (Z[2]);.

Proof. We omit the proof of i) which is standard as in our other papers. We
notice only that o1, oo and 7 is a base dual to [-adic logarithms (i.e, Kummer
characters) [(1 — &2), (1 — €2) and [(2). To show ii) we just calculate. It rests
to show iii).
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In the Lie algebra gryw Lield (Z[ps)[5]) (vesp. grw Lield (Z[ps][1]);) we choose
in degree 1 generators S1, Sz, N (resp. T1, T») dual to I(1 —&2), I(1 — £2) and
1(2) (resp. 1(1 —¢&21) and I(1 — €2)). Then the natural morphism

_ 1
m : grw Liell (Z]ps][—

D g i (2l

is given in degree 1 by m(S;) = T; and ©(N) = 0.
The Lie ideal I(Z[us)[15] : Z[us][%]) in degree 2 has a base [S1, N], [S2, N].
The Lie algebra morphism

. . 1 .
grw Liepg: : QTWLWU(Z[ME)][E]N — Lie(X,Yy,...,Yy),{})

in degree 1 is given by (ngLiew(ﬁ)(Sl) = oy, (ngLiegoa)(Sg) = o and
(grw Liep s )(N) = 1.

Observe that the linear form [Y7,Y3]* vanishes on {o1,n} and on {o2,n}.
Therefore F vanishes on [S1, N] and on [Sz, N]. Hence F vanishes on the
Lie ideal I(Z[us)[{5] : Z[ps][£]). Therefore F defines a linear form F on
grw Lield (Z[ps)[£]); such that F([S1,Ss]) = 1 because [Y1,Ys]*({o1,02}) = 1.
O

Remark 7.3. There are three linearly independent periods of mixed Tate
motives over SpecZ[us][1] in degree 2, Liy(£2), Liz(£2) and the iterated integral

fol dz dz_. On the other hand one cannot get this third period as an

z2—&1o 7 2—€50
— —
iterated integral on P!(C) \ ({0,00} U p5) from 01 to 10 of the sequence of one
forms 42, 4= _dz_for k =1,2,3,4.

z ) z—1? z—{}f
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