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Abstract
In the case of univariate Gaussian mixtures, unbounded likelihood is an

important theoretical and practical problem. Using the weak information
that the latent sample size of each component has to be greater than
the space dimension, we derive a simple non-asymptotic stochastic lower
bound on variances. We prove also that maximizing the likelihood under
this data-driven constraint leads to consistent estimates.

Résumé
Dans le cas des mélanges gaussiens univariés, le fait que la vraisem-

blance soit non bornée est un problème théorique et pratique important.
Dans ce contexte d’estimation, il est naturel d’imposer que chaque com-
posante du mélange a généré un minimum de deux individus. Cette in-
formation pour le moins minimale nous permet d’obtenir une borne in-
férieure stochastique sur les variances qui est non asymptotique et aussi
très simple à calculer. Nous prouvons également que la maximisation de
la vraisemblance sous cette contrainte aléatoire conduit bien à des esti-
mateurs convergents.
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1 Introduction
Because Gaussian mixtures models are an extremely flexible method of model-
ing, they received increasing attention over the years, from both practical and
theoretical points of view. Various approaches to estimate mixture distribu-
tions are available [see 6, for a survey], including the method of moments, the
Bayesian methodology or the maximum likelihood (ML) approach, the latter
being usually much preferred. Nevertheless, it is well-known that the likelihood
function of normal mixture models is not bounded from above [5, 1]. As a con-
sequence, firstly some theoretical questions about the ML properties are raised
and, secondly, optimization algorithms like EM [2, 8] may converge, as observed
by any practicioner, towards such degenerate solutions.

Avoiding degeneracy is usually handled by constraining the variances. The
main option consists to constraint variances to be greater than a given “small”
value. Such a bound can be either arbitrarily chosen (typically the numeri-
cal tolerance of computer for many practitioners) or chosen in a smarter way
for ensuring consistency of the constraint ML [9]. Another way is to impose
relative constraints between variances [3, 4]. Alternatively, [7] imposed a con-
straint on the latent partition underlying the data (instead of a constraint on
the variances), what leads to maximize a bounded likelihood and gives con-
sistent estimates. The proposed assumption is weak and natural since it only
requires that at least two data units arise from each univariate mixture Gaus-
sian component. However, maximizing this likelihood is untractable because
of combinatorial difficulties, in particular when more than two components are
involved.

Using such a weak assumption on the latent partition, the present work
establishes a non-asymptotic stochastic lower bound on the variance of each
component. This data-driven lower bound is very simple to calculate from the
sample and leads to consistent estimates of the mixture. It can be used by any
practitioner without any modification of its preferred ML software (typically
EM).

The outline of this paper is the following. In Section 2, we present the
degeneracy problem and we introduce the constraint on the latent partition.
The derived data-driven non-asymptotic stochastic lower bound on the variances
is obtained and studied in Section 3. The last section (Section 4) concludes by
discussing consequences and possible extensions of the present work.

2 Linking latent partition with degeneracy
2.1 Observed-data likelihood and degeneracy
In the univariate Gaussian mixture model assumption, each individual Xi of
the data set X = (X1, . . . , Xn) i.i.d. arises from the density

f(·; θ) =
g∑
k=1

πkφ(·;µk, σ2
k)
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where πk is the mixing proportion of the kth component (0 < πk < 1 for all
k = 1, . . . , g and

∑
k πk = 1) and where φ(.;µk, σ2

k) denotes the density of the
Gaussian distribution of this kth component with mean µk and variance σ2

k

(σ2
k > 0 for all k = 1, . . . , g). These natural constraints on the mixture param-

eter θ = (π1, . . . , πg, µ1, . . . , µg, σ
2
1 , . . . , σ

2
g) are summarized in the parameter

space Θ.
It is well-known that the observed-data likelihood defined by

L(θ; X) =
n∏
i=1

f(Xi; θ) (1)

is unbounded from above [5, 1]. For say X1, if µ1 = X1 and σ2
k fixed for all

k ∈ {2, . . . , g} then L(θ; X) → ∞ as soon as σ2
1 → 0. It corresponds to the

so-called degeneracy.

2.2 Constraining the likelihood with the latent partition
From a generative point of view, the data set X is built from the two following
sequential steps:

1. First a partition Z = (Z1, . . . ,Zn) is obtained by n i.d.d. realizations
Zi = (Zi1, . . . , Zig)′ of the multinomial distribution of order one and of
parameter (π1, . . . , πg), Zi denoting a binary vector where Zik = 1 if the
ith data unit arises from the kth component and 0 otherwise.

2. Then, conditionally to Zi, each Xi is independently generated from the
Gaussian component indicated by Zik.

In mixture models, Z is latent, but if it were known the complete-data likelihood

L(θ; X,Z) =
n∏
i=1

g∏
k=1

[
πkφ(Xi;µk, σ2

k)
]Zik

could be maximized on θ. However, even in this full data case, degeneracy arises
as soon as a given k ∈ {1, . . . , g} is such that Nk = 1, where Nk =

∑n
i=1 Zik de-

notes the number of individuals arising from the kth component. Consequenly,
the unique solution for avoiding degeneracy to occur (with probability one) with
complete-data likelihood in the general Gaussian case is to impose the constraint
Z∗ on Z where

Z∗ = {Z : Nk ≥ 2, k = 1, . . . , g}

is the set of all partitions containing at least two individuals from each compo-
nent.

Starting from this remark, [7] proposed to maximize a likelihood taking into
account the additional information Z∗ on the latent partition Z. He chooses to
maximize the conditional likelihood L(θ; X|Z∗) and establishes that it is now
bounded and leads to consistent estimates. He gives the detail of a specific
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EM algorithm for maximizing L(θ; X|Z∗) but it is computational untractable
as soon as g > 2. Note that the augmented-data likelihood L(θ; X,Z∗) would
lead exactly to the same problem.

We will overcome this difficulty in the next section by proposing an alterna-
tive solution through a cheaper computational lower bound on the variances.

3 A data-driven bound on variances
3.1 Establishing the lower bound
In order to prevent the (traditional) likelihood (1) to degenerate, we propose
now alternatively a lower bound (noted B∗n(α) below) on the variances σ2

k of
each component k = 1, . . . , g. Originality relies on the fact that this bound is
stochastic, non asymptotic and data-driven. The next proposition establishes
it by using the weak assumption Z∗ on Z already discussed in the previous
section.

Proposition 1. For any α ∈ (0, 1), define the bound

B∗n(α) = min1≤i<j≤n(Xi −Xj)2

2χ2
n−2g+1((1− α)1/g)

, (2)

where χ2
λ(α) denotes the quantile of χ2 with λ degrees of freedom and of order

α. Then, we have

P
(
∀k ∈ {1, . . . , g} , σ2

k > B∗n(α) | Z∗
)
≥ 1− α.

A proof is available in A.

Remarks

• The numerator involved in the bound B∗n(α) relies on the calculus of the
square of the minimum distance between two distinct observations. Note
that this corresponds to the minimum of the unbiased empirical variance
(up to a factor 2) of the pair (Xi, Xj) since

(Xi− X̄i,j)2 + (Xj − X̄i,j)2 = (Xi−Xj)2/2, with X̄i,j = (Xi +Xj)/2.

Moreover, this bound is easy and fast to compute using the following
equality:

min
1≤i<j≤n

(Xi −Xj)2 = min
1≤i≤n−1

(X(i+1) −X(i))2,

where X(1), . . . , X(n) are the order statistics. It is also independent on g.

• The lower bound may be not very sharp since it is likely verified with far
higher probability than 1−α in most cases. However it will be convenient
for the strategy of use that we describe now.
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3.2 Using the bound for avoiding degeneracy
Since the bound B∗n(α) is non asymptotic and data-driven, we can use it to
compute the maximum likelihood estimator (MLE) over a (random) constrained
subspace of the parameter space. Note that the constrained space allows to
avoid the problem of the MLE existence. This strategy leads also to consistent
estimates of the mixture parameter as it is claimed in the following proposition
(a proof is given in A).

Proposition 2. Let the following restricted mixture parameter data-driven set

Θ∗n(α) = {θ : θ ∈ Θ, k ∈ {1, . . . , g}, σ2
k ≥ B∗n(α)}.

Noting
θ̂
∗
n(α) = argmax

θ∈Θ∗n(α)
L(θ; X)

and θ0 the true mixture parameter, then θ̂
∗
n(α) pr→ θ0 as n → ∞, up to a label

permutation of components.

4 Discussion
In this work, we have used a quite natural and weak information on the latent
partition in order to avoid degeneracy in univariate Gaussian mixtures. The
proposed approach corresponds to a non-asymptotic stochastic lower bound on
the variances which is very easy to calculate by any practitioner. In addition, it
can be naturally combined with any standard ML optimization procedure like
the EM algorithm by simply discarding any run crossing the variance bound
B∗n(α). Thus, this bound could provide an interesting response not only for
theorists but also for practitioners.

Two main extensions of this work could be of interest. First, avoiding degen-
eracy in the multivariate Gaussian mixture is planned in our future works. We
expect to address it in a proper manner by imposing again constraints on the
latent partition. Second, it is also worth noting that our proposal does not solve
the difficult problem of spurious solutions of the likelihood [see 6, Sections 3.10
and 3.11]. However, we think that introducing again some information on the
latent partition could be an interesting way to explore for tackle this problem
since spurious solutions can be seen as a Gaussian “captured” by a very small
set of individuals.

A Proofs of propositions
Proof of Proposition 1. For k = 1, . . . , g, we note Vk(Z) the unbiased
estimate of σ2

k obtained by maximizing the complete-data likelihood L(θ; X,Z):

Vk(Z) = 1
Nk − 1

∑
i: Zik=1

(Xi − X̄k(Z))2 where X̄k(Z) = 1
Nk

∑
i: Zik=1

Xi.
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Conditionally to the random variables Z and to the event Z∗, the g variables
(Nk−1)Vk(Z)/σ2

k have a Chi-square distribution with Nk−1 degrees of freedom
and are independent. Thus we deduce that, for any α ∈ (0, 1),

P

(
∀k ∈ {1, . . . , g} , σ2

k ≥
(Nk − 1)Vk(Z)

χ2
Nk−1((1− α)1/g)

∣∣∣Z,Z∗) = 1− α.

From Lemma 1 (see B) and noticing that {i : Zik = 1} ⊂ {1, . . . , n}, we have
Vk(Z) ≥ min1≤i<j≤n Vi,j , where Vi,j denotes the unbiased empirical variance of
(Xi, Xj). Since Vi,j = 1

2 (Xi −Xj)2 implies that

Vk(Z) ≥ 1
2 min

1≤i<j≤n
(Xi −Xj)2,

we obtain that (note that now the condition on Z can be weakened into a
condition on N = (N1 . . . , Ng)),

P

(
∀k ∈ {1, . . . , g} , σ2

k ≥
(Nk − 1) min1≤i<j≤n(Xi −Xj)2

2χ2
Nk−1((1− α)1/g)

∣∣∣∣∣N,Z∗
)
≥ 1− α.

Moreover, using the fact that

• ∀λ1, λ2 ∈ N∗, λ1 ≤ λ2 ⇒ χ2
λ1

(α) ≤ χ2
λ2

(α),

• Nk ≥ 2 for all k ∈ {1, . . . , g} (equivalent to the constraint Z∗ on Z)
together with

∑g
k=1Nk = n implies that Nk ≤ n− 2(g − 1) for all

k ∈ {1, . . . , g},

the condition on N vanishes and we deduce that

P

(
∀k ∈ {1, . . . , g} , σ2

k ≥
min1≤i<j≤n(Xi −Xj)2

2χ2
n−2g+1((1− α)1/g)

∣∣∣∣∣Z∗
)
≥ 1− α,

thus the conclusion follows.
Proof of Proposition 1. Convergence of estimates of θ0 are understood
below up to a label permutation of components. We will use a result of [9] on
the consistency of the maximum likelihood estimator when the variances are
constrainted to be lower bounded by some sequence cn = exp(−nδ) for some
δ ∈ (0, 1). More precisely, denoting by Θn the restricted mixture parameter set,

Θn = {θ : θ ∈ Θ, k ∈ {1, . . . , g}, σ2
k > cn},

and θ̂n a MLE restricted to Θn,

θ̂n = argmax
θ∈Θn

L(θ; X),

[9] demonstrate the strong consistency of the sequence θ̂n. Therefore if we prove
that

lim
n→+∞

P(B∗n(α) ≥ cn) = 1 and lim
n→+∞

P
(

θ̂n ∈ Θ∗n(α)
)

= 1,
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then we will deduce that

lim
n→+∞

P
(

θ̂n = θ̂
∗
n(α)

)
= 1,

and this leads to the weak consistency of the sequence of estimators θ̂
∗
n(α), up

to a label permutation of components.
First, we prove that limn→+∞ P(B∗n(α) ≥ cn) = 1. It is the consequence

of Lemmas 2 and 3 (see B). Lemma 2 allows to control the random term
min1≤i<j≤n(Xi − Xj)2 and Lemma 3 establishes the equivalence χ2

n(α) ∼ n.
Thus, by definition of B∗n(α) (given in Equation (2)),

P(B∗n(α) ≥ cn) = P
(

min
1≤i<j≤n

(Xi −Xj)2 ≥ 2cnχ2
n−2g+1((1− α)1/g)

)
.

We then apply Lemma 2 with c = 2cnχ2
n−2g+1((1−α)1/g) and Lemma 3 allows

to conclude that limn→+∞ n(n− 1)
(
2cnχ2

n−2g+1((1− α)1/g)
)1/2 = 0.

Secondly, we prove that limn→+∞ P
(

θ̂n ∈ Θ∗n(α)
)

= 1. It follows from
the two following convergences. On the one hand θ̂n converges to θ0 almost
surely [see 9]. On the other hand, limn→+∞ P

(
θ0 ∈ Θ∗n(α)

)
= 1 because the

bound B∗n(α) tends almost surely to 0 when n tends to +∞ (it is clear since
min1≤i<j≤n(Xi − Xj)2 is a decreasing positive sequence and χ2

n−2g+1,(1−α)1/g

tends to +∞).

B Lemmas
Lemma 1. For I = {1, . . . ,m}, we note VI the unbiased empirical variance of
(Xi)i∈I given by

VI = 1
m− 1

∑
i∈I

(Xi − X̄I)2 where X̄I = 1
m

∑
i∈I

Xi.

Then, for any k ∈ {2, . . . ,m} the following equality holds

VI = 1(
m
k

) ∑
J⊂I,#J=k

VJ ,

where #J denotes the cardinal of the set J . Consequently,

VI ≥ min
J⊂I,#J=k

VJ .
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Proof. We develop the mean of the sum of {VJ}J⊂I,#J=k:∑
J⊂I,#J=k

VJ =
∑

J⊂I,#J=k

( 1
k − 1

∑
j∈J

X2
j −

1
k(k − 1)

∑
j,j′∈J

XjXj′

)
= 1

(k − 1)

( ∑
J⊂I,#J=k

∑
j∈J

X2
j −

1
k

∑
J⊂I,#J=k

∑
j,j′∈J

XjXj′

)
= 1

(k − 1)

(∑
i∈I

X2
i #{J ⊂ I,#J = k, i ∈ J}

−1
k

∑
i∈I

X2
i #{J ⊂ I,#J = k, i ∈ J}

−1
k

∑
i 6=i′∈I

XiXi′#{J ⊂ I,#J = k, i, i′ ∈ J}
)

= 1
(k − 1)

(
k − 1
k

(
m− 1
k − 1

)∑
i∈I

X2
i −

1
k

(
m− 2
k − 2

) ∑
i6=i′∈I

XiXi′

)

=
(
m

k

)(
1
m

∑
i∈I

X2
i −

1
m(m− 1)

∑
i 6=i′∈I

XiXi′

)

=
(
m

k

)(
1

m− 1
∑
i∈I

X2
i −

1
m(m− 1)

∑
i,i′∈I

XiXi′

)
=
(
m

k

)
VI .

The second part of this lemma is immediate.

Lemma 2. For any c > 0,

P
(

min
1≤i<j≤n

(Xi −Xj)2 ≥ c
)
≥ 1− n(n− 1)√

σ2
∗π

√
c,

where σ2
∗ = min1≤k≤g σ

2
k.

Proof.

P
(

min
1≤i<j≤n

(Xi −Xj)2 ≥ c
)

= P

 ⋂
1≤i<j≤n

{
(Xi −Xj)2 ≥ c

}
= 1− P

 ⋃
1≤i<j≤n

{
(Xi −Xj)2 ≤ c

}
≥ 1−

∑
1≤i<j≤n

P
(
(Xi −Xj)2 ≤ c

)
.

And, conditioning with respect to (Zi,Zj), the law of Xi − Xj is a normal
random variable and more precisely, if Zik = 1 and Zjl = 1 then Xi −Xj is a
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normal random variable with mean µk − µl and variance σ2
k + σ2

l . Thus,

P
(
(Xi −Xj)2 ≤ c

)
= E

[
P
(
(Xi −Xj)2 ≤ c

)
|Zi,Zj

]
= E

[
P
(
|Xi −Xj | <

√
c
)
|Zi,Zj

]
=

∑
1≤k,l≤g

πkπlν

([−√c− (µk − µl)√
σ2
k + σ2

l

,

√
c− (µk − µl)√
σ2
k + σ2

l

])
,

where ν denotes the standard normal distribution. And the Mean Value Theo-
rem implies for any real numbers x ≤ y,

ν([x, y]) = Φ(y)− Φ(x) ≤ 1√
2π

(y − x).

From which we deduce that

P
(
(Xi −Xj)2 ≤ c

)
≤ 2

√
c√

4σ2
∗π

=
√

c

σ2
∗π
.

Lemma 3. For any α ∈ (0, 1), the quantile χ2
n(α) of χ2 with n degrees of

freedom and of order α is equivalent to n when n tends to +∞.

Proof. It follows directly from the fact that if Xn is a χ2 random variable with
n degrees of freedom then Xn/n

pr→ 1. Consequently, for all ε > 0 there exists
N ∈ N∗ such that for all n ≥ N

P(Xn ≤ (1− ε)n) ≤ α and P(Xn ≥ (1 + ε)n) ≤ 1− α.

The last inequality can be written as P(Xn ≤ (1 + ε)n) ≥ α, and this leads to

(1− ε)n ≤ χ2
n(α) ≤ (1 + ε)n.
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